@article{ASENS_2000_4_33_5_695_0, author = {Kudla, Stephen S. and Rapoport, Michael}, title = {Cycles on Siegel threefolds and derivatives of Eisenstein series}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {33}, year = {2000}, pages = {695-756}, doi = {10.1016/s0012-9593(00)01051-x}, mrnumber = {2002e:11076b}, zbl = {01571177}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2000_4_33_5_695_0} }
Kudla, Stephen S.; Rapoport, Michael. Cycles on Siegel threefolds and derivatives of Eisenstein series. Annales scientifiques de l'École Normale Supérieure, Tome 33 (2000) pp. 695-756. doi : 10.1016/s0012-9593(00)01051-x. http://gdmltest.u-ga.fr/item/ASENS_2000_4_33_5_695_0/
[1] Uniformisation p-adique des courbes de Shimura : les théorèmes de Cerednik et de Drinfeld, in : Courbes Modulaires et Courbes de Shimura, Astérisque, Vol. 196-197, 1991, pp. 45-158. | MR 1141456 | MR 93c:11041 | Zbl 0781.14010
, ,[2] Travaux de Shimura, Sem. Bourbaki 389, Lecture Notes in Math., Vol. 244, Springer-Verlag, Berlin, 1971. | Numdam | MR 498581 | MR 58 #16675 | Zbl 0225.14007
,[3] La conjecture de Weil pour les surfaces K3, Invent. Math. 15 (1972) 206-226. | MR 296076 | MR 45 #5137 | Zbl 0219.14022
,[4] Quadratische Formen und orthogonale Gruppen, Springer-Verlag, Berlin, 1974. | MR 351996 | MR 50 #4484 | Zbl 0277.10017
,[5] Intersection Theory, Springer-Verlag, Berlin, 1984. | MR 732620 | MR 85k:14004 | Zbl 0541.14005
,[6] Letter to M. Rapoport, August 12, 1996.
,[7] On the intersection of modular correspondances, Invent. Math. 112 (1993) 225-245. | MR 1213101 | MR 94h:11046 | Zbl 0811.11026
, ,[8] Class numbers of positive definite ternary quaternion hermitian forms, Proc. Japan Acad. 59 (1983) 490-493. | MR 732595 | MR 85h:11019 | Zbl 0539.10020
,[9] On class numbers of positive definite binary quaternion hermitian forms, J. Fac. Sci. Univ. Tokyo, Sect IA 27 (1980) 549-601. | MR 603952 | MR 82j:10038 | Zbl 0452.10029
, ,[10] Supersingular curves of genus two and class numbers, Compos. Math. 57 (1986) 127-152. | Numdam | MR 87f:14026 | Zbl 0589.14028
, , ,[11] Ein getwistetes fundamentales Lemma für die GSp4, Bonner Mathematische Schriften 303 (1997). | MR 99k:11078 | Zbl 0899.11025
,[12] Families of supersingular abelian surfaces, Compos. Math. 62 (1987) 107-167. | Numdam | MR 88j:14053 | Zbl 0636.14017
, ,[13] A note on local representation densities of quadratic forms, Nagoya Math. J. 92 (1983) 145-152. | MR 85e:11029 | Zbl 0523.10012
,[14] Fourier coefficients of Eisenstein series of degree 3, Proc. Japan Acad. 60 (1984) 259-261. | MR 86d:11041 | Zbl 0551.10024
,[15] Arithmetic of Quadratic Forms, Cambridge Tracts in Mathematics, Vol. 106, Cambridge Univ. Press, Cambridge, UK, 1993. | MR 95c:11044 | Zbl 0785.11021
,[16] Tamagawa numbers, Ann. Math. 127 (1988) 629-646. | MR 90e:11075 | Zbl 0678.22012
,[17] Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992) 373-444. | MR 93a:11053 | Zbl 0796.14014
,[18] Algebraic cycles on Shimura varieties of orthogonal type, Duke Math. J. 86 (1997) 39-78. | MR 98e:11058 | Zbl 0879.11026
,[19] Central derivatives of Eisenstein series and height pairings, Ann. Math. 146 (1997) 545-646. | MR 99j:11047 | Zbl 0990.11032
,[20] Intersection numbers of cycles on locally symmetric spaces and Fourier coefficients of holomorphic modular forms in several complex variables, Publ. Math. Inst. Hautes Études Sci. 71 (1990) 121-172. | Numdam | MR 92e:11035 | Zbl 0722.11026
, ,[21] Arithmetic Hirzebruch Zagier cycles, J. Reine Angew. Math. 515 (1999) 155-244. | MR 2002e:11076a | Zbl 1048.11048
, ,[22] Height pairings on Shimura curves and p-adic uniformization, Invent. Math. (to appear). | Zbl 1009.11043
, ,[23] Familles de courbes et de variétés abéliennes sur ℙ¹, II. exemple, in : Szpiro L. (Ed.), Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Astérisque, Vol. 86, 1981, pp. 125-140. | Zbl 0515.14007
,[24] Which abelian surfaces are products of elliptic curves ?, Math. Ann. 214 (1975) 35-47. | MR 51 #519 | Zbl 0283.14007
,[25] On modular representations of Gal(ℚ/ℚ) arising from modular forms, Invent. Math. 100 (1990) 431-476. | MR 91g:11066 | Zbl 0773.11039
,[26] Bimodules and abelian surfaces, Adv. Stud. in Pure Math. 17 (1989) 359-407. | MR 92a:11070 | Zbl 0742.11033
,[27] Algèbre Locale. Multiplicités, Lect. Notes in Math., Vol. 11, Springer-Verlag, Berlin, 1965. | MR 34 #1352 | Zbl 0142.28603
,[28] Existence of certain canonical models, Duke Math. J. 45 (1978) 63-66. | MR 81d:10020 | Zbl 0386.20023
,[29] Arithmetic of alternating forms and quaternion hermitian forms, J. Math. Soc. Japan 15 (1963) 63-65. | MR 26 #3694 | Zbl 0121.28102
,[30] On the reduction of the Hilbert-Blumenthal moduli scheme with Г0(p)-level structure, Forum Math. 9 (1997) 405-455. | MR 98h:14030 | Zbl 0916.14022
,[31] A computation of the gamma matrix of a family of p-adic zeta integrals, J. Number Theory 55 (1995) 222-260. | MR 96m:11108 | Zbl 0862.14015
,[32] An explicit formula for local densities of quadratic forms, J. Number Theory 72 (1998) 309-356. | MR 99j:11034 | Zbl 0930.11021
,