@article{ASENS_2000_4_33_5_611_0, author = {Colbois, Bruno and Courtois, Gilles}, title = {Petites valeurs propres et classe d'Euler des $S1-$ fibr\'es}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {33}, year = {2000}, pages = {611-645}, doi = {10.1016/s0012-9593(00)01048-x}, zbl = {0968.58001}, language = {fr}, url = {http://dml.mathdoc.fr/item/ASENS_2000_4_33_5_611_0} }
Colbois, Bruno; Courtois, Gilles. Petites valeurs propres et classe d’Euler des $S1-$ fibrés. Annales scientifiques de l'École Normale Supérieure, Tome 33 (2000) pp. 611-645. doi : 10.1016/s0012-9593(00)01048-x. http://gdmltest.u-ga.fr/item/ASENS_2000_4_33_5_611_0/
[1] Einstein Manifolds, Ergebnisse der Math. und ihrer Grenzgebiete Band 10, Springer-Verlag, Berlin-Heidelberg-New York, 1987. | MR 88f:53087 | Zbl 0613.53001
,[2] Differential Form in Algebraic Topology, Graduate Texts in Mathematics 82, Springer-Verlag, 1982. | MR 83i:57016 | Zbl 0496.55001
, ,[3] On the lowest eigenvalue of the Hodge Laplacian, J. Differential Geom. 45 (2) (1997) 273-287. | MR 98i:58236 | Zbl 0874.58087
, ,[4] Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5, 327-372. | MR 93a:53036 | Zbl 0758.53022
, , ,[5] Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. | MR 87k:53087 | Zbl 0606.53028
, ,[6] Collapsing Riemannian manifolds while keeping their curvature bounded I, II, J. Differential Geom. 32 (1990) 269-298. | MR 92a:53066 | Zbl 0727.53043
, ,[7] Sur la multiplicité de la première valeur propre non nulle du Laplacien, Comment. Math. Helv. 61 (1986) 254-270. | MR 88b:58140 | Zbl 0607.53028
,[8] Sur la multiplicité d'une surface de Riemann, Comment. Math. Helv. 63 (1988) 194-208. | MR 90c:58182 | Zbl 0656.53043
, ,[9] A note on the first non-zero eigenvalue of the Laplacian acting on p-forms, Manuscr. Math. 68 (1990) 143-160. | MR 91g:58290 | Zbl 0709.53031
, ,[10] Spectrum of manifolds with holes, J. Funct. Anal. 134 (1) (1995) 194-221. | MR 97b:58142 | Zbl 0847.58076
,[11] Adiabatic limits, non-multiplicativity of signature and Leray spectral sequence, J. Amer. Math. Soc. 4 (2) (1991) 265-321. | MR 92f:58169 | Zbl 0736.58039
,[12] Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85 (1982) 438-443. | MR 84k:58223 | Zbl 0502.58038
,[13] Spectral sequences and adiabatic limits, Comm. Math. Phys. 168 (1) (1995) 57-116. | MR 96g:58176 | Zbl 0827.58001
,[14] Hodge theory and spectral sequences, Topology 33 (3) (1994) 591-611. | MR 95j:58160 | Zbl 0816.55004
,[15] Collapsing Riemannian manifolds to ones of lower dimension, J. Differential Geom. 25 (1987) 139-156. | MR 88b:53050 | Zbl 0606.53027
,[16] Collapsing Riemannian manifolds and eigenvalues of the Laplace operator, Invent. Math. 87 (1987) 517-547. | MR 88d:58125 | Zbl 0589.58034
,[17] Paul Levy's isoperimetric inequality, Institut des Hautes Études Sci., Bures-sur-Yvette, France, 1980, Preprint.
,[18] Curvature diameter and Betti numbers, Comment. Math. Helv. 56 (1981) 179-195. | MR 82k:53062 | Zbl 0467.53021
,[19] On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Éc. Norm. Sup. 13 (1980) 451-469. | Numdam | MR 82h:58054 | Zbl 0466.53023
,[20] Eigenvalues of a compact Riemannian manifold, in : Proceedings Symposium on Pure Math., 1980, pp. 205-239. | MR 81i:58050 | Zbl 0441.58014
, ,[21] The adiabatic limit, Hodge cohomology and Leray's spectral sequence for a fibration, J. Differential Geom. 31 (1990) 185-213. | MR 90m:58004 | Zbl 0702.58007
, ,[22] Foundations of Differential Manifolds and Lie Groups, Scott, Foresman and Company Glenview, London, 1971. | Zbl 0241.58001
,