@article{ASENS_2000_4_33_4_561_0, author = {Sandier, \'Etienne and Serfaty, Sylvia}, title = {A rigorous derivation of free-boundary problem arising in superconductivity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {33}, year = {2000}, pages = {561-592}, doi = {10.1016/s0012-9593(00)00122-1}, mrnumber = {2002k:35324}, zbl = {01702168}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2000_4_33_4_561_0} }
Sandier, Etienne; Serfaty, Sylvia. A rigorous derivation of free-boundary problem arising in superconductivity. Annales scientifiques de l'École Normale Supérieure, Tome 33 (2000) pp. 561-592. doi : 10.1016/s0012-9593(00)00122-1. http://gdmltest.u-ga.fr/item/ASENS_2000_4_33_4_561_0/
[1] Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) 1-49. | MR 99f:35183 | Zbl 0904.35023
, ,[2] Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint.
, , ,[3] A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Nonlinear Anal. 1 (3) (1994) 1-21. | MR 95e:35192 | Zbl 0866.35030
, , ,[4] Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR 95c:58044 | Zbl 0802.35142
, , ,[5] Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, Interfaces and Free Boundaries (to appear).
, ,[6] Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire 12 (1995) 243-303. | Numdam | MR 96g:35045 | Zbl 0842.35119
, ,[7] Un terme étrange venu d'ailleurs, in : Nonlinear Partial Differential Equations and their Applications, Coll. de France Semin. Vol. II, Res. Notes Math., Vol. 60, 1982, pp. 98-138. | MR 84e:35039a | Zbl 0496.35030
, ,[8] A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (2) (1996) 97-111. | MR 97b:82111 | Zbl 0849.35135
, , ,[9] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359 (electronic). | MR 2000b:35235 | Zbl 0920.35058
, ,[10] Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR 2001f:35115 | Zbl 0928.35045
,[11] L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. | MR 83b:46045 | Zbl 0471.46020
,[12] Obstacle Problems in Mathematical Physics, Mathematical Studies, North-Holland, 1987. | MR 88d:35006 | Zbl 0606.73017
,[13] Lower bounds for the energy of unit vector fields and application, J. Functional Anal. 152 (2) (1998) 379-403. | MR 99b:58056 | Zbl 0908.58004
,[14] Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse non Linéaire 17 (1) (2000) 119-145. | Numdam | MR 2001i:58039 | Zbl 0947.49004
, ,[15] On the energy of type-II superconductors in the mixed phase, Reviews in Math. Phys. (to appear). | Zbl 0964.49006
, ,[16] Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemp. Math. 1 (2) (1999) 213-254. | MR 2001a:82077 | Zbl 0944.49007
,[17] Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemp. Math. 1 (3) (1999) 295-333. | MR 2001f:82089 | Zbl 0964.49005
,[18] Stable configurations in superconductivity : Uniqueness, multiplicity and vortex-nucleation, Arch. Rat. Mech. Anal. 149 (1999) 329-365. | MR 2001h:82114 | Zbl 0959.35154
,[19] Introduction to Superconductivity, 2nd edn., McGraw-Hill, 1996.
,