@article{ASENS_2000_4_33_1_1_0, author = {Alves, Jos\'e Ferreira}, title = {SRB measures for non-hyperbolic systems with multidimensional expansion}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {33}, year = {2000}, pages = {1-32}, doi = {10.1016/s0012-9593(00)00101-4}, mrnumber = {2002i:37032}, zbl = {0955.37012}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_2000_4_33_1_1_0} }
Alves, José Ferreira. SRB measures for non-hyperbolic systems with multidimensional expansion. Annales scientifiques de l'École Normale Supérieure, Tome 33 (2000) pp. 1-32. doi : 10.1016/s0012-9593(00)00101-4. http://gdmltest.u-ga.fr/item/ASENS_2000_4_33_1_1_0/
[1] Absolutely continuous invariant measures for piecewise expanding C2 transformations in ℝn with cusps on their boundaries, Ergodic Theory Dynamical Systems 16 (1996) 1-18. | MR 96k:58129 | Zbl 0856.58022
,[2] SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Preprint CMUP, University of Porto, 1999.
, and ,[3] On iterations of 1 - ax² on (-1, 1), Ann. Math. 122 (1985) 1-25. | MR 87c:58058 | Zbl 0597.58016
and ,[4] The dynamics of the Hénon map, Ann. Math. 133 (1991) 73-169. | MR 92d:58116 | Zbl 0724.58042
and ,[5] SRB-measures for certain Hénon maps, Invent. Math. 112 (1993) 541-576. | MR 94e:58074 | Zbl 0796.58025
and ,[6] Lorenz-like attractors with arbitrary unstable dimension, C. R. Acad. Sci. Série I 325 (1997) 883-888. | Zbl 0896.58043
, and ,[7] SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel J. Math. (to appear). | Zbl 0996.37033
and ,[8] The ergodic theory of Axiom A flows, Invent. Math. 29 (1975) 181-202. | MR 52 #1786 | Zbl 0311.58010
and ,[9] A.c.i.m.'s for arbitrary expanding piecewise ℝ-analytic mappings of the plane, Preprint Luminy, 1998.
,[10] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | MR 93f:28001 | Zbl 0804.28001
and ,[11] Minimal Surfaces and Functions of Bounded Variation, Birkäuser, Basel, 1984. | MR 87a:58041 | Zbl 0545.49018
,[12] Absolutely continuous invariant measures for piecewise expanding C2 transformations in ℝN, Israel J. Math. 67 (1989) 272-286. | MR 91c:58061 | Zbl 0691.28004
and ,[13] On functions of bounded variation in higher dimensions, Amer. Math. Month. 99 (2) (1992) 159-160. | MR 92k:26025 | Zbl 0757.26014
and ,[14] Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981) 39-88. | MR 83j:58070 | Zbl 0497.58017
,[15] Ergodicité et mesures invariants pour les transformations dilatants par morceaux d'une région bornée du plan, C. R. Acad. Sci. Paris Série A 289 (1979) 625-627. | MR 80k:28016 | Zbl 0419.28007
,[16] On the existence of invariant measures for piecewise monotonic maps, Trans. Amer. Math. Soc. 186 (1973) 481-488. | MR 49 #538 | Zbl 0298.28015
and ,[17] Ergodic Theory and Differentiable Dynamics, Springer, Berlin, 1987. | Zbl 0616.28007
,[18] One-Dimensional Dynamics, Springer, Berlin, 1993. | MR 95a:58035 | Zbl 0791.58003
and ,[19] Abundance of strange attractors, Acta Math. 171 (1993) 1-71. | MR 94k:58089 | Zbl 0815.58016
and ,[20] A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976) 619-654. | MR 54 #3763 | Zbl 0355.58010
,[21] Absolutely continuous invariant measures for multi-dimensional expanding maps, Preprint Luminy, 1997.
,[22] Gibbs measures in ergodic theory, Russ. Math. Surv. 27 (4) (1972) 21-69. | MR 53 #3265 | Zbl 0255.28016
,[23] Stable orbits and bifurcations of maps of the interval, SIAM J. Appl. Math. 35 (1978) 260-267. | MR 58 #13206 | Zbl 0391.58014
,[24] Absolutely continuous invariant measures for piecewise real-analytic maps on the plane, Preprint Hokkaido Univ., 1998.
,[25] Strange attractors in higher dimensions, Bull. Braz. Math. Soc. 24 (1993) 13-62. | MR 94k:58093 | Zbl 0784.58044
,[26] Multidimensional nonhyperbolic attractors, Publ. Math. IHES 85 (1997) 63-96. | Numdam | MR 98j:58073 | Zbl 1037.37016
,