@article{ASENS_1996_4_29_3_385_0, author = {Levasseur, Thierry and Stafford, J. Toby}, title = {The kernel of an homomorphism of Harish-Chandra}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {29}, year = {1996}, pages = {385-397}, doi = {10.24033/asens.1743}, mrnumber = {97b:22019}, zbl = {0859.22010}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_1996_4_29_3_385_0} }
Levasseur, T.; Stafford, J. T. The kernel of an homomorphism of Harish-Chandra. Annales scientifiques de l'École Normale Supérieure, Tome 29 (1996) pp. 385-397. doi : 10.24033/asens.1743. http://gdmltest.u-ga.fr/item/ASENS_1996_4_29_3_385_0/
[1] Rings of Differential Operators, North Holland, Amsterdam, 1979. | Zbl 0499.13009
,[2] Algebraic D-modules, Academic Press, Boston, 1987. | MR 89g:32014 | Zbl 0642.32001
et al.,[3] Homological Algebra, Princeton University Press, Princeton, 1956. | MR 17,1040e | Zbl 0075.24305
and ,[4] Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simple (J. Reine Angew. Math., Vol. 309, 1979, pp. 183-190). | MR 80i:17011 | Zbl 0409.22009
,[5] An Introduction to Noncommutative Noetherian Rings, Cambridge Univ. Press, Cambridge, 1989.
and , ,[6] Invariant distributions on Lie algebras (Amer. J. Math., Vol. 86, 1964, pp. 271-309). | MR 28 #5144 | Zbl 0131.33302
,[7] Invariant differential operators and distributions on a semi-simple Lie algebra (Amer. J. Math., Vol. 86, 1964, pp. 534-564). | MR 31 #4862a | Zbl 0161.33804
,[8] Invariant eigendistributions on a semi-simple Lie algebra (Inst. Hautes Etudes Sci. Publ. Math., Vol. 27, 1965, pp. 5-54). | Numdam | MR 31 #4862c | Zbl 0199.46401
,[9] An Introduction to Complex Analysis in Several Variables, North-Holland, Amsterdam, 1979.
,[10] The invariant holonomic system on a semisimple Lie algebra (Invent. Math., Vol. 75, 1984, pp. 327-358). | MR 87i:22041 | Zbl 0538.22013
and ,[11] A generalization of Quillen's Lemma and its applications to the Weyl algebras (Israel J. Math., Vol. 28, 1977, pp. 177-192). | MR 58 #28097 | Zbl 0366.17006
,[12] The Invariant Holonomic System on a Semisimple Lie Group (in “Algebraic Analysis” dedicated to M. Sato, Vol. 1, 1988, pp. 277-286, Academic Press). | MR 90k:22021 | Zbl 0704.22008
,[13] Lie group representations on polynomial rings (Amer. J. Math., Vol. 85, 1963, pp. 327-404). | MR 28 #1252 | Zbl 0124.26802
,[14] Invariant differential operators and an homomorphism of Harish-Chandra (J. Amer. Math. Soc., Vol. 8, 1995, pp. 365-372). | MR 95g:22029 | Zbl 0837.22011
and ,[15] Noncommutative Noetherian Rings, John Wiley, Chichester, 1987. | MR 89j:16023 | Zbl 0644.16008
and ,[16] Fixed Rings of Finite Automorphism Groups of Associative Rings (Lecture Notes in Mathematics, Vol. 818, Springer-Verlag, Berlin/New York, 1980). | MR 81j:16041 | Zbl 0449.16001
,[17] Commuting varieties of semisimple Lie algebras and algebraic groups (Compositio Math., Vol. 38, 1979, pp. 311-322). | Numdam | MR 80c:17009 | Zbl 0409.17006
,[18] Lifting differential operators from orbit spaces (Ann. Sci. Ecole Norm. Sup., Vol. 28, 1995, pp. 253-306). | Numdam | MR 96f:14061 | Zbl 0836.14032
,[19] Invariant differential operators (Proceedings of the 1994 International Congress of Mathematics, to appear). | Zbl 0857.13025
,[20] Harmonic Analysis on Real Reductive Groups, Part I (Lecture Notes in Mathematics Vol. 576, Springer-Verlag, Berlin/New York, 1977). | MR 57 #12789 | Zbl 0354.43001
,[21] Invariant differential operators on a reductive Lie algebra and Weyl group representations (J. Amer. Math. Soc., Vol. 6, 1993, pp. 779-816). | MR 94a:17014 | Zbl 0804.22004
,