Uniformization of surface laminations
Candel, Alberto
Annales scientifiques de l'École Normale Supérieure, Tome 26 (1993), p. 489-516 / Harvested from Numdam
@article{ASENS_1993_4_26_4_489_0,
     author = {Candel, Alberto},
     title = {Uniformization of surface laminations},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {26},
     year = {1993},
     pages = {489-516},
     doi = {10.24033/asens.1678},
     mrnumber = {94f:57025},
     zbl = {0785.57009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_1993_4_26_4_489_0}
}
Candel, Alberto. Uniformization of surface laminations. Annales scientifiques de l'École Normale Supérieure, Tome 26 (1993) pp. 489-516. doi : 10.24033/asens.1678. http://gdmltest.u-ga.fr/item/ASENS_1993_4_26_4_489_0/

[1] L. Ahlfors and L. Bers, Riemann's Mapping Theorem for Variable Metrics, Annals of Math., Vol. 72, 1960, p. 385-404. | MR 22 #5813 | Zbl 0104.29902

[2] R. Brody, Compact Manifolds and Hyperbolicity, Trans. Amer. Math. Soc., Vol. 235, 1978, p. 213-219. | MR 57 #10010 | Zbl 0416.32013

[3] G. Cairns and E. Ghys, Totally Geodesic Foliations of Four-Manifolds, J. Differential Geom., Vol. 23, 1986, p. 241-254. | MR 87m:53043 | Zbl 0601.53027

[4] J. Cantwell and L. Conlon, Leafwise Hyperbolicity of Proper Foliations. Comment. Math. Helv., Vol. 64, 1989, p. 329-337. A correction. Ibid., Vol. 66, 1991, p. 319-321. | MR 90f:57035 | Zbl 0768.57013

[5] A. Connes, Sur la théorie non-commutative de l'intégration, Algèbres d'Opérateurs. Lecture Notes in Math., Vol. 725, p. 19-143. Springer-Verlag, New York, 1979. | MR 81g:46090 | Zbl 0412.46053

[6] C. Earle and A. Schatz, Teichmüller Theory for Surfaces with Boundary. J. Differential Geom., Vol. 4, 1970, p. 169-185. | MR 43 #2737b | Zbl 0194.52802

[7] D. Epstein, K. Millett and D. Tischler, Leaves Without Holonomy. J. London Math. Soc., Vol. 16, 1977, p. 548-552. | MR 57 #4193 | Zbl 0381.57007

[8] L. Garnett, Foliations, the Ergodic Theorem and Brownian Motion. J. of Funct. Anal., Vol. 51, 1983, p. 285-311. | MR 84j:58099 | Zbl 0524.58026

[9] E. Ghys, Gauss-Bonnet Theorem for 2-Dimensional Foliations. J. of Funct. Anal., Vol. 77, 1988, p. 51-59. | MR 89d:57040 | Zbl 0656.57017

[10] S. Goodman and J. Plante, Holonomy and Averaging in Foliated Sets. J. Differential Geom., Vol. 14, 1979, p. 401-407. | MR 81m:57020 | Zbl 0475.57007

[11] C. Moore and C. Schochet, Global Analysis of Foliated Spaces. Springer-Verlag, New York, 1988. | MR 89h:58184 | Zbl 0648.58034

[12] A. Phillips and D. Sullivan, Geometry of Leaves. Topology, Vol. 20, 1981, p. 209-218. | MR 82f:57021 | Zbl 0454.57016

[13] J. Plante, Foliations with Measure Preserving Holonomy. Annals of Math., Vol. 105, 1975, p. 327-361. | MR 52 #11947 | Zbl 0314.57018

[14] G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées. Hermann, Paris, 1952. | MR 14,1113a | Zbl 0049.12602

[15] D. Ruelle and D. Sullivan, Currents, Flows and Diffeomorphisms. Topology, Vol. 14, 1975, p. 319-327. | MR 54 #3759 | Zbl 0321.58019

[16] D. Sullivan, Cycles for the Dynamical Study of Foliated Manifolds and Complex Manifolds, Invent. Math., Vol. 36, 1976, p. 225-255. | MR 55 #6440 | Zbl 0335.57015

[17] D. Sullivan, Bounds, Quadratic Differentials, and Renormalization Conjectures. Mathematics into the 21st Century. Vol. 2. American Mathematical Society Centennial Publications, Providence, 1991. | Zbl 0936.37016

[18] A. Verjovsky, A Uniformization Theorem for Holomorphic Foliations. Contemp. Math., Vol. 58, III, 1987, p. 233-253. | MR 88h:57027 | Zbl 0619.32017