@article{ASENS_1992_4_25_5_515_0, author = {Pesce, Hubert}, title = {D\'eformations isospectrales sur certaines nilvari\'et\'es et finitude spectrale des vari\'et\'es de Heisenberg}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {25}, year = {1992}, pages = {515-538}, doi = {10.24033/asens.1657}, mrnumber = {94c:58214}, zbl = {0777.58008}, language = {fr}, url = {http://dml.mathdoc.fr/item/ASENS_1992_4_25_5_515_0} }
Pesce, Hubert. Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg. Annales scientifiques de l'École Normale Supérieure, Tome 25 (1992) pp. 515-538. doi : 10.24033/asens.1657. http://gdmltest.u-ga.fr/item/ASENS_1992_4_25_5_515_0/
[1] Le spectre d'une variété riemanienne (Lecture Notes in Math., Springer, 194, 1971). | MR 43 #8025 | Zbl 0223.53034
, et ,[2] Introduction aux groupes arithmétiques, Hermann, Actualités scientifiques et industrielles, 1341. | MR 39 #5577 | Zbl 0186.33202
,[3] Isospectral Deformations II : Trace Formulas, Metrics and Potentials (Comm. Pure Appl. Math., vol. 40, 1987, p. 367-387). | MR 88m:58186 | Zbl 0709.53030
et ,[4] Geometry of 2-Step Nilpotent Groups with a Left Invariant Metric, Preprint de l'Université de Caroline du Nord.
,[5] Isospectral Deformations of Compact Solvmanifolds (J. Differential Geom., vol. 19, 1984, p. 241-256). | MR 85j:58143 | Zbl 0523.58043
et ,[6] Isometry Groups of Solvmanifolds (Trans. Amer. Math. Soc., vol. 307, 1988, p. 245-256). | MR 89g:53073 | Zbl 0664.53022
et ,[7] The Spectrum of the Laplacian on Riemannian Heisenberg Manifolds (Michigan Math. J., vol. 33, 1986, p. 253-271). | MR 87k:58275 | Zbl 0599.53038
et ,[8] Some Inverse Spectral Results for Negatively Curved n-Manifolds (Proc. Symp. Pure Math., Geometry of the Laplace Operator, Amer. Math. Soc., vol. 36, 1980, p. 153-180). | MR 81i:58048 | Zbl 0456.58031
et ,[9] Some Inverse Spectral Results for Negatively Curved 2-Manifolds (Topology, vol. 19, 1980, p. 153-180). | Zbl 0465.58027
et ,[10] Isospectral Problem for Spherical Space Forms, in Spectra of Riemannian Manifolds, M. BERGER, S. MURAKANI et T. OCHIAI éd. ; Kaigai Publication, 1983, p. 57-63.
,[11] Riemannian Nilmanifolds Attached to Clifford Modules (Geom. Dedicata, vol. 11, 1981, p. 127-136). | MR 82h:22008 | Zbl 0495.53046
,[12] Fundamental Solutions for a Class of Hypoelliptic PDE Generated by Composition of Quadratics Forms (Trans. Amer. Math. Soc., vol. 258, n° 1, mars 1980). | MR 81c:58059 | Zbl 0393.35015
,[13] Positive Definite Quadratic Form with Same Representation Numbers (Arch. Math., vol. 28, 1977, p. 495-497). | MR 56 #255 | Zbl 0361.10019
,[14] Eigenvalues of the Laplace Operator on Certain Manifolds (Proc. Nat. Acad. Sci., vol. 51, 1964, p. 542). | MR 28 #5403 | Zbl 0124.31202
,[15] Curvatures of Left Invariant Metrics on Lie Groups (Advances in mathematics, vol. 21, 1976, p. 293-329). | MR 54 #12970 | Zbl 0341.53030
,[16] Spectral Rigidity for Manifolds with Negative Curvature Operator (Contemp. Math. Nonlinear Problems in Geometry, vol. 51, 1986, p. 99-103). | MR 87k:58278 | Zbl 0591.53041
,[17] Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972. | MR 58 #22394a | Zbl 0254.22005
,[18] Riemannian Covering and Isospectral Manifolds (Ann. of Math., vol. 121, 1985, p. 169-186). | MR 86h:58141 | Zbl 0585.58047
,[19] Variétés riemanniennes isospectrales et non isométriques (Ann. of Math., vol. 112, 1980, p. 21-32). | MR 82b:58102 | Zbl 0445.53026
,[20] The Eigenvalues Spectrum as Moduli for Flat Tori (Trans. Amer. Math. Soc., vol. 244, 1978, p. 313-321). | MR 58 #24155 | Zbl 0405.58051
,[21] The Length Spectrum as Moduli for Compact Riemann Surfaces (Ann. of Math., vol. 109, 1979, p. 323-351). | MR 80j:58067 | Zbl 0441.30055
,