@article{ASENS_1992_4_25_1_1_0, author = {Joseph, Anthony}, title = {Annihilators and associated varieties of unitary highest weight modules}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {25}, year = {1992}, pages = {1-45}, doi = {10.24033/asens.1642}, mrnumber = {93e:17010}, zbl = {0752.17007}, mrnumber = {1152612}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_1992_4_25_1_1_0} }
Joseph, Anthony. Annihilators and associated varieties of unitary highest weight modules. Annales scientifiques de l'École Normale Supérieure, Tome 25 (1992) pp. 1-45. doi : 10.24033/asens.1642. http://gdmltest.u-ga.fr/item/ASENS_1992_4_25_1_1_0/
[1] The Unitary Dual for Complex Classical Lie Groups (Inv. Math., Vol. 96, 1989, pp. 103-176). | MR 90c:22044 | Zbl 0692.22006
,[2] Primitive Ideals and Orbital Integrals in Complex Classical Groups (Math. Ann., Vol. 259, 1982, pp. 153-199). | MR 83m:22026 | Zbl 0489.22010
and ,[3] Differential Operators on Homogeneous Spaces III (Invent. Math., Vol. 80, 1985, pp. 1-68). | MR 87i:22045 | Zbl 0577.22014
and ,[4] Über die Gelfand-Kirillov Dimension (Math. Ann., Vol. 220, 1976, pp. 1-24). | MR 54 #367 | Zbl 0306.17005
and ,[5] Groupes et Algèbres de Lie, Chaps. IV-VI, Act. Sci. Ind., 1337, Hermann, Paris, 1968. | MR 39 #1590
,[6] Differential Operators and Highest Weight Representations, preprint, 1990.
, and ,[7] Algèbres enveloppantes (Cahiers scientifiques, No. 37, Gauthier-Villars, Paris, 1974). | MR 58 #16803a | Zbl 0308.17007
,[8] Analogues of Kostant's u Cohomology Formulas for Unitary Highest Weight Modules (J. reine angew. Math., Vol. 392, 1988, pp. 27-36). | MR 89m:22022 | Zbl 0651.17003
,[9] A Classification of Unitary Highest Weight Modules, in Representation Theory of Reductive Groups, Ed., Boston, 1983, pp. 97-143. | MR 86c:22028 | Zbl 0535.22012
, and ,[10] An Intrinsic Analysis of Unitarizable Highest Weight Modules (Math. Ann., Vol. 288, 1990, pp. 571-594). | MR 91m:17005 | Zbl 0725.17009
and ,[11] Zur eben Oktavengeometrie (Indag. Math., Vol. 15, 1953, pp. 195-200). | Zbl 0053.01503
,[12] Singular Holomorphic Representations and Singular Modular Forms (Math. Ann., Vol. 259, 1982, pp. 227-244). | MR 84b:22023 | Zbl 0466.32017
and ,[13] On Singular Holomorphic Representations (Invent. Math., Vol. 62, 1980, pp. 67-78). | MR 82e:22025 | Zbl 0466.22016
,[14] Hermitian Symmetric Spaces and Their Unitary Highest Weight Modules (J. Funct. Anal., Vol. 52, 1983, pp. 385-412). | MR 85a:17004 | Zbl 0517.22014
,[15] Restrictions and Expansions of Holomorphic Representations (J. Funct. Anal., Vol. 34, 1979, pp. 29-53). | MR 80m:22020 | Zbl 0433.22011
and ,[16] Einhüllenden Algebren halbeinfacher Lie-Algebren (Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1983). | Zbl 0541.17001
,[17] The Minimal Orbit in a Simple Lie Algebra and Its Associated Maximal Ideal (Ann. Ec. Norm. Sup., Vol. 9, 1976, pp. 1-30). | Numdam | MR 53 #8168 | Zbl 0346.17008
,[18] A Preparation Theorem for the Prime Spectrum of a Semisimple Lie Algebra (J. Algebra, Vol. 48, 1977, pp. 241-289). | MR 56 #12082 | Zbl 0405.17007
,[19] Gelfand-Kirillov Dimension for the Annihilators of Simple Quotients of Verma Modules (J. Lond. Math. Soc., Vol. 18, 1978, pp. 50-60). | MR 58 #22202 | Zbl 0401.17007
,[20] Kostant's Problem, Goldie Rank and the Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). | MR 82f:17008 | Zbl 0446.17006
,[21] Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra I-III (J. Algebra, Vol. 65, 1980, pp. 269-283 and 284-306, Vol. 73, 1981, pp. 295-326). | Zbl 0441.17004
,[22] A Characteristic Variety for the Primitive Spectrum of a Semisimple Lie Algebra, in Non-Commutative Harmonic Analysis (Lectures Notes, No. 587, Berlin, 1977, pp. 102-118). | MR 56 #8645 | Zbl 0374.17004
,[23] On the Variety of a Highest Weight Module (J. Algebra, Vol. 88, 1984, pp. 238-278). | MR 85j:17014 | Zbl 0539.17006
,[24] A Surjectivity Theorem for rigid Highest Weight Modules (Invent. Math., Vol. 92, 1988, pp. 567-596). | MR 89d:17013 | Zbl 0657.17004
,[25] The Minimal Nilpotent Orbit, the Joseph Ideal and Differential Operators (J. Algebra, Vol. 116, 1988, pp. 480-501). | MR 89k:17028 | Zbl 0656.17009
, and ,[26] Rings of Differential Operators on Classical Rings of Invariants (Mem. Am. Math. Soc., Vol. 412, 1989). | MR 90i:17018 | Zbl 0691.16019
and ,[27] Non-Commutative Noetherian Rings, Wiley-Interscience, New York, 1987. | MR 89j:16023 | Zbl 0644.16008
and ,[28] Quantization of Nilpotent Orbit Covers in Complex Classical Groups, preprint, 1989.
,[29] The Orbit Method and Primitive Ideals for Semisimple Lie Algebras, (Canad. Math. Soc. Conference Proceedings, Vol. 5, 1986, pp. 281-316). | MR 87k:17015 | Zbl 0585.17008
,