Abelian surfaces and Kowalewski's top
Lesfari, A.
Annales scientifiques de l'École Normale Supérieure, Tome 21 (1988), p. 193-223 / Harvested from Numdam
@article{ASENS_1988_4_21_2_193_0,
     author = {Lesfari, A.},
     title = {Abelian surfaces and Kowalewski's top},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {21},
     year = {1988},
     pages = {193-223},
     doi = {10.24033/asens.1556},
     mrnumber = {89k:58125},
     zbl = {0667.58019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_1988_4_21_2_193_0}
}
Lesfari, A. Abelian surfaces and Kowalewski's top. Annales scientifiques de l'École Normale Supérieure, Tome 21 (1988) pp. 193-223. doi : 10.24033/asens.1556. http://gdmltest.u-ga.fr/item/ASENS_1988_4_21_2_193_0/

[1] M. Adler and P. Van Moerbeke, Completely Integrable Systems, Euclidean Lie Algebras and Curves (Adv. Math., Vol. 38, 1980, pp. 267-317). | MR 83m:58041 | Zbl 0455.58017

[2] M. Adler and P. Van Moerbeke, Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory (Adv. Math., Vol. 38, 1980, pp. 318-379). | MR 83m:58042 | Zbl 0455.58010

[3] M. Adler and P. Van Moerbeke, Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and Regularization (Comm. Math. Phys., Vol. 83, 1982, pp. 83-106). | MR 83c:58036 | Zbl 0491.58017

[4] M. Adler and P. Van Moerbeke, The Algebraic Integrability of Geodesic Flow on SO (4) (Invent. Math., Vol. 67, 1982, pp. 297-331 with an appendix by D. Mumford). | MR 84g:58048 | Zbl 0539.58012

[5] M. Adler and P. Van Moerbeke, A Systematic Approach Towards Solving Integrable Systems (to appear).

[6] M. Adler and P. Van Moerbeke, Intersection of Quadrics and Geodesic Flow on SO (4) (to appear).

[7] M. Adler and P. Van Moerbeke, A Classification of Integrable Geodesic Flows on SO (4) (to appear).

[8] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, Berlin, Heidelberg, New York, 1978. | MR 57 #14033b | Zbl 0386.70001

[9] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. | MR 80b:14001 | Zbl 0408.14001

[10] L. Haine, Geodesic Flow on SO (4) and Abelian Surfaces (Math. Ann., Vol. 263, 1983, pp. 435-472). | MR 84k:14031 | Zbl 0521.58042

[11] L. Haine, The Algenraic Complete Integrability of Geodesic Flow on SO (n) (Comm. Math. Phys., Vol. 94, 1984, pp. 271-287). | MR 86c:58065 | Zbl 0584.58023

[12] G.-H. Halphen, Traité des fonctions elliptiques et de leurs applications, Gauthier-Villars, Paris, 1888. | JFM 20.0434.01

[13] S. Hille, Ordinary Differential Equations in the Complex Domain, Wiley-Interscience, New York, 1976. | Zbl 0343.34007

[14] G. Kolossoff, Ueber eine eigenschaft der differentialgleichungen der rotation eines schweren körpers um einen festen punkt im falle von frau S. Kowalewski (Math. Ann., Vol. 56, 1903, pp. 265-272). | JFM 33.0762.01

[15] F. Kötter, Sur le cas traité par Kowalewski de rotation d'un corps solide pesant autour d'un point fixe (Acta Math., Vol. 17, 1892, pp. 209-263). | JFM 25.1432.01

[16] S. Kowalewski, Sur le problème de la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 12, 1889, pp. 177-232). | JFM 21.0935.01

[17] S. Kowalewski, Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 14, 1890, pp. 81-93). | JFM 22.0921.02

[18] A. Lesfari, Une approche systématique à la résolution du corps solide de Kowalewski (C. R. Acad. Sci. Paris, T. 302, série I, 1986, pp. 347-350). | MR 87m:58072 | Zbl 0606.34012

[19] A. Lesfari, Le corps solide de Kowalewski et les variétés Abéliennes (Thèse de doctorat en sciences, Université de Louvain, Louvain-la-Neuve, Belgique, décembre 1985).

[20] D. Mumford, Abelian Varieties, Oxford University press, Bombay-Oxford, 1974.

[21] P. Van Moerbeke, Algebraic Complete Integrability of Hamiltonian Systems and Kac-Moody Lie Algebras (Proc. Int. Congress of Math., Warszawa, August 1893. | Zbl 0566.58019

[22] P. Van Moerbeke, The Royak Society Lecture on Algebraic Methods in Hamiltonian Mechanics (Proc. of the Royal Society, London, November 1, 1984).

[23] A. Weil, Euler and the Jacobians of Elliptic Curves (Progress in Math., Vol. 36, pp. 353-359, Birkhöuser Boston, Inc., 1983). | MR 85d:14060 | Zbl 0554.01014