@article{ASENS_1984_4_17_1_31_0, author = {Kasue, Atsushi}, title = {On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {17}, year = {1984}, pages = {31-44}, doi = {10.24033/asens.1464}, mrnumber = {85i:58120}, zbl = {0553.53026}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_1984_4_17_1_31_0} }
Kasue, Atsushi. On a lower bound for the first eigenvalue of the Laplace operator on a riemannian manifold. Annales scientifiques de l'École Normale Supérieure, Tome 17 (1984) pp. 31-44. doi : 10.24033/asens.1464. http://gdmltest.u-ga.fr/item/ASENS_1984_4_17_1_31_0/
[1] Sur la vibration fondamentale d'une membrane (Comptes Rendus de l'Acad. des Sci., Paris, Vol. 204, 1937, pp. 472-473). | JFM 63.0762.02
,[2] Inégalités isopérimétriques et applications (Ann. scient. Éc. Norm. Sup., Paris, 4e série, t. 15, 1982, pp. 513-542). | Numdam | MR 84h:58147 | Zbl 0527.35020
et ,[3] Manifolds of negative curvature (Trans. Amer. Math. Soc., Vol. 145, 1969, pp. 1-49). | MR 40 #4891 | Zbl 0191.52002
and ,[4] The splitting theorem for manifolds of nonnegative curvature (J. Differential Geometry, Vol. 6, 1971, pp. 119-128). | MR 46 #2597 | Zbl 0223.53033
and ,[5] Methods of Mathematical Physics, Interscience Pub., Inc., New York, 1970.
and ,[6] Visibility manifolds (Pacific J. Math., Vol. 46, 1973, pp. 45-109). | MR 49 #1421 | Zbl 0264.53026
and ,[7] Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions (Comm. Math. Helvetici, Vol. 51, 1976, pp. 133-161). | MR 54 #568 | Zbl 0339.31003
and ,[8] Minorations sur le λ1 des variétés riemanniennes, Séminaire Bourbaki 33e année, 1980-1981, n° 569. | Numdam | Zbl 0493.53034
,[9] A Sobolev inequality and some geometric applications, preprint (séminaire Franco-Japonais de Kyoto).
,[10] On the subharmonicity and plurisubharmonicity of geodesically convex function, (Indiana Univ., Math. J., Vol. 22, 1973, pp. 641-653). | MR 54 #10672 | Zbl 0235.53039
and ,[11] D∞ approximations of convex, subharmonic and plurisubharmonic functions (Ann. scient. Éc. Norm. Sup., 4e série, t. 12. 1979, pp. 47-84). | Numdam | MR 80m:53055 | Zbl 0415.31001
and ,[12] Paul Levy's isoperimetric inequalities, Publications I.H.E.S., 1981.
,[13] A general comparison theorem with applications to volume estimates for submanifolds (Ann. scient. Éc. Norm. Sup., Paris, Vol. 11, 1978, pp. 451-470). | Numdam | MR 80i:53026 | Zbl 0416.53027
and ,[14] On a Riemannian manifold with a pole (Osaka J. Math., Vol. 18, 1981, pp. 109-113). | MR 83f:53030 | Zbl 0477.53042
,[15] A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold (Japan J. Math., Vol. 18, 1982, pp. 309-341). | MR 85h:53031 | Zbl 0518.53048
,[16] Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary (J. Math. Soc. Japan, Vol. 35, 1983, pp. 117-131). | MR 84g:53068 | Zbl 0494.53039
,[17] On certain problems of the maximum and minimum of characteristic values and on the Lyapunov zones of stability (A.M.S. Trans., Vol. 2, n° 1, 1955, pp. 163-187). | MR 17,484e | Zbl 0066.33404
,[18] Géométrie des groupes de transformations, Dunod, 1958. | MR 23 #A1329 | Zbl 0096.16001
,[19] Estimates of eigenvalues of a compact Riemannian manifold (Proc. Symp. Pure Math. A.M.S., Vol. 36, 1980, pp. 205-239). | MR 81i:58050 | Zbl 0441.58014
and ,[20] An upper bound to the spectrum on a manifold of negative curvature (J. Differential Geometry, Vol. 4, 1970, pp. 359-366). | MR 42 #1009 | Zbl 0197.18003
,[21] Certain conditions for a Riemannian manifold to be isometric with a sphere (J. Math. Soc. Japan, Vol. 14, 1962, pp. 333-340). | MR 25 #5479 | Zbl 0115.39302
,[22] Some results on nonnegatively curved manifolds (J. Differential Geometry, Vol. 9, 1974, pp. 583-600). | MR 51 #11351 | Zbl 0292.53037
,[23] Applications of the Hessian operator in a Riemannian manifold, (Indiana Univ. Math. J., Vol. 26, 1977, pp. 459-472). | MR 57 #13799 | Zbl 0391.53019
,[24] An elementary method in the study of nonnegative curvature (Acta. Math., Vol. 142, 1979, pp. 57-78). | MR 80c:53054 | Zbl 0403.53022
,