Induced representations of reductive 𝔭-adic groups. I
Bernstein, I. N. ; Zelevinsky, A. V.
Annales scientifiques de l'École Normale Supérieure, Tome 10 (1977), p. 441-472 / Harvested from Numdam
@article{ASENS_1977_4_10_4_441_0,
     author = {Bernstein, I. N. and Zelevinsky, Andrei},
     title = {Induced representations of reductive ${\mathfrak {p}}$-adic groups. I},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {10},
     year = {1977},
     pages = {441-472},
     doi = {10.24033/asens.1333},
     mrnumber = {58 \#28310},
     zbl = {0412.22015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_1977_4_10_4_441_0}
}
Bernstein, I. N.; Zelevinsky, A. V. Induced representations of reductive ${\mathfrak {p}}$-adic groups. I. Annales scientifiques de l'École Normale Supérieure, Tome 10 (1977) pp. 441-472. doi : 10.24033/asens.1333. http://gdmltest.u-ga.fr/item/ASENS_1977_4_10_4_441_0/

[1] I. N. Bernstein and A. V. Zelevinsky, Representations of the group GL (n, F), where F is a local Non-Archimedean Field, (Uspekhi Mat. Nauk., Vol. 31, No. 3, 1976, pp. 5-70). | Zbl 0348.43007

[2] I. N. Bernstein and A. V. Zelevinsky, Induced Representations of the Group GL (n) over a p-adic Field (Funkt. Anal. i Priložen., Vol. 10, No. 3, 1976, pp. 74-75). | MR 54 #12989

[3] A. Borel, Linear Algebraic Groups, Benjamin, New York-Amsterdam, 1969. | MR 40 #4273 | Zbl 0186.33201

[4] A. Borel et J. Tits, Groupes réductifs (Publ. Math. I.H.E.S., No. 27, 1965). | Numdam | MR 34 #7527 | Zbl 0145.17402

[5] N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5 et 6, Hermann Paris, 1968. | Zbl 0186.33001

[6] W. Casselman, Steinberg Character as a True Character (Proc. Sympos. Pure Math., Vol. 26, 1972, pp. 413-418). | MR 49 #3039 | Zbl 0289.22017

[7] G. Van Dijk, Some Recent Results of Harish-Chandra for p-adic groups [Colloque sur les fonctions sphériques, Nancy, 5-9 janvier 1971 (preprint)]. | MR 55 #12879 | Zbl 0352.22016

[8] I. M. Gelfand and D. A. Kajdan, On Representations of the Group GL (n, K), where K is a local Field (Funkt. Anal. i Priložen., Vol. 6, No. 4, 1972, pp. 73-74).

[9] I. M. Gelfand and D. A. Kajdan, Representations of GL (n, K), in “Lie Groups and their Representations 2, Akadèmiai Kiado, Budapest, 1974.

[10] H. Jacquet, Sur les représentations des groupes réductifs p-adiques (C. R. Acad. Sc. Paris, t. 280, No. 19, série A, 1975, pp. 1271-1272. | MR 51 #5856 | Zbl 0309.22012

[11] Harish-Chandra, Harmonic Analysis on Reductive p-adic Groups (preprint).

[12] R. Howe, Some Qualitative Results on the Representation Theory of GLn over a p-adic Field (Inst. for Adv. Study 1972).

[13] D. M. Kan, Adjoint Functors (Trans. Amer. Math. Soc., Vol. 87, 1958, pp. 294-329). | MR 24 #A1301 | Zbl 0090.38906

[14] G. I. Olshansky, Intertwining Operators and Complementary Series in the Class of Representations of the General Group of Matrices over a Locally Compact Division Algebra, induced from Parabolic Subgroups (Mat. Sb., Vol. 93, No. 2, 1974, pp. 218-253). | Zbl 0298.22016

[15] T. A. Springer, Cusp Forms for Finite Groups, in Seminar on Algebraic Groups and Related Finite Groups, (Lecture Notes in Math., Vol. 131, Springer-Verlag, 1970). | MR 41 #8541 | Zbl 0263.20024

[16] R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967.