@article{ASENS_1975_4_8_4_487_0, author = {Yau, Shing-Tung}, title = {Isoperimetric constants and the first eigenvalue of a compact riemannian manifold}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {8}, year = {1975}, pages = {487-507}, doi = {10.24033/asens.1299}, mrnumber = {53 \#1478}, zbl = {0325.53039}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_1975_4_8_4_487_0} }
Yau, Shing-Tung. Isoperimetric constants and the first eigenvalue of a compact riemannian manifold. Annales scientifiques de l'École Normale Supérieure, Tome 8 (1975) pp. 487-507. doi : 10.24033/asens.1299. http://gdmltest.u-ga.fr/item/ASENS_1975_4_8_4_487_0/
[1] Le spectre d'une variété riemannienne (Lecture Notes in Math., N°. 194, Springer). | MR 43 #8025 | Zbl 0223.53034
, , et ,[2] Geometry of Manifolds, Academic Press, 1964. | Zbl 0132.16003
and ,[3] Isoperimetric Problems for Regions on a Surface Having Restricted Width (Proceedings of Stek. Inst. Math., N°. 76, 1965.) | MR 34 #1972 | Zbl 0167.50802
and ,[4] The First Eigenvalue of the Laplacian on Manifolds of Non-Negative Curvature (to appear).
and ,[5] The Relation Between the Laplacian and the Diameter for Manifolds of Non-Negative Curvature (Arch. der Math., Vol. 19, 1968, p. 558-560). | MR 38 #6503 | Zbl 0177.50201
,[6] A Lower Bound for the Smallest Eigenvalue of the Laplacian, In “Problems in Analysis, a symposium in honor of S. Bochner”, Princeton University Press, 1970. | Zbl 0212.44903
,[7] Eigenfunctions and Eigenvalues of Laplacian (to ppear in the Proceedings of Symposium on Differential Geometry). | Zbl 0308.35076
,[8] Eigenvalue Comparison Theorems and its Geometric Applications (Math. Z., Vol. 143, 1975, p. 289-297.) | MR 51 #14170 | Zbl 0329.53035
,[9] Collars on Riemann Surfaces, In “Discontinuous Groups and Riemann Surfaces”, edited by by GREENBERG, Princeton University Press, 1974, p. 263-268. | MR 52 #738 | Zbl 0304.30014
,[10] On the Isoperimetric Inequality on Surfaces of Variable Gaussian Curvature (Ann. of Math., Vol. 60, 1954, p. 237-247). | MR 16,508d | Zbl 0056.15801
,[11] Caractérisation variationnelle d'une somme de valeurs propres consécutives (C. R. Acad. Sc., t. 252, 1961, série A, p. 1714-1716). | MR 23 #A3362 | Zbl 0096.08602
,[12] Une majoration de λ1 du type de Cheeger (C. R. Acad. Sc., t. 277, série A, 1973). | MR 50 #14581 | Zbl 0264.53021
,[13] An Upper Bound to the Spectrum on a Manifold of Negative Curvature (J. of Diff. Geom., Vol. 4, 1970, p. 359-366). | MR 42 #1009 | Zbl 0197.18003
,[14] Geometric Measure Theory, Springer, 1969. | MR 41 #1976 | Zbl 0176.00801
,[15] Extensions of the Rauch Comparison Theorem to Submanifolds (Trans. Amer. Math. Soc., Vol. 122, 1966, p. 341-356). | MR 34 #759 | Zbl 0139.15601
,[16] Sobolev and Isoperimetric Inequalities for Riemannian Submanifolds (to appear). | Zbl 0295.53025
, and ,[17] Sobolev and Mean Value Inequalities on Generalized Submanifolds of Rn (Comm. Pure and Appl. Math., 1973, p. 361-379). | MR 49 #9717 | Zbl 0256.53006
, and ,[18] A Theorem of E. Hopf (Mich. Math. J., Vol., 5, 1958, p. 31-34). | MR 20 #4300 | Zbl 0134.39601
,[19] The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971, p. 119-128). | MR 46 #2597 | Zbl 0223.53033
, and ,[20] A Note on Curvature and Fundamental Group (J. Diff. Geom., Vol. 2, 1968, p. 1-8). | MR 38 #636 | Zbl 0162.25401
,[21] Harmonic Spaces, Edizioni Cremonese, Roma. | Zbl 0134.39202
, , and ,[22] Propriétés globales des espaces riemanniens harmoniques (Ann. Inst. Fourier, Vol. 15, N°. 2, 1965, p. 91-132). | Numdam | MR 33 #6549 | Zbl 0178.55903
,[23] Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. | MR 34 #2380 | Zbl 0142.38701
,[24] Contributions to Riemannian Geometry in the Large (Ann. Math., Vol. 69, 1959, p. 654-666). | MR 21 #4445 | Zbl 0133.15003
,