@article{ASENS_1975_4_8_2_275_0, author = {Knapp, A. W.}, title = {Weyl group of a cuspidal parabolic}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {8}, year = {1975}, pages = {275-294}, doi = {10.24033/asens.1288}, mrnumber = {51 \#13138}, zbl = {0305.22010}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_1975_4_8_2_275_0} }
Knapp, A. W. Weyl group of a cuspidal parabolic. Annales scientifiques de l'École Normale Supérieure, Tome 8 (1975) pp. 275-294. doi : 10.24033/asens.1288. http://gdmltest.u-ga.fr/item/ASENS_1975_4_8_2_275_0/
[1] On Root Systems and an Infinitesimal Classification of Irreducible Symmetric Spaces (J. of Math. of Osaka City Univ. vol. 13, 1962, p. 1-34). | MR 27 #3743 | Zbl 0123.03002
,[2] Groupes et Algèbres de Lie, chapter 4-6, Eléments de mathématique, vol. 34, Hermann, Paris, 1968. | Zbl 0483.22001
,[3] Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, p. 74-128). | MR 33 #2766 | Zbl 0199.46403
,[4] Harmonic Analysis on Semi-Simple Lie Groups (Bull. Amer. Math. Soc., vol. 76, 1970, p. 529-551). | MR 41 #1933 | Zbl 0212.15101
,[5] On the Theory of the Eisenstein Integral, in Conference on Harmonic Analysis (Lectures Notes in Mathematics, n° 266, Springer-Verlag, New York, 1972, p. 123-149). | MR 53 #3200 | Zbl 0245.22019
,[6] | Zbl 0111.18101
, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.[7] | MR 49 #3032 | Zbl 0288.22015
, Determination of Intertwining Operators, in Harmonic Analysis on Homogeneous Spaces (Proc. Symp. in Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, p. 263-268).[8] | MR 57 #536 | Zbl 0257.22015
and , Intertwining Operators for Semi-Simple Groups (Ann. of Math., vol. 93, 1971, p. 489-578).[9] | MR 51 #3358 | Zbl 0293.22026
and , Singular Integrals and the Principal Series III (Proc. Nat. Acad. Sc. U.S.A., vol. 71, 1974, p. 4622-4624).[10] | MR 22 #9546 | Zbl 0094.34603
, On Representations and Compactifications of Symmetric Riemannian Spaces (Ann. of Math., vol. 71, 1960, p. 77-110).[11] | MR 26 #3827 | Zbl 0204.04201
, Conjugate Classes of Cartan Subalgebras in Real Semi-Simple Lie Algebras (J. Math. Soc. Japan, vol. 11, 1959, p. 374-434).[12] | MR 37 #309 | Zbl 0238.20052
, Classification of Algebraic Semi-Simple Groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Symp. in Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, p. 33-62).[13] | Zbl 0265.22020
, Harmonic Analysis on Semi-Simple Lie Groups, vol. 1, Springer-Verlag, New York, 1972.