The center of the universal enveloping algebra of a Lie algebra in characteristic p
Veldkamp, F. D.
Annales scientifiques de l'École Normale Supérieure, Tome 5 (1972), p. 217-240 / Harvested from Numdam
@article{ASENS_1972_4_5_2_217_0,
     author = {Veldkamp, F. D.},
     title = {The center of the universal enveloping algebra of a Lie algebra in characteristic $p$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     volume = {5},
     year = {1972},
     pages = {217-240},
     doi = {10.24033/asens.1225},
     mrnumber = {46 \#7341},
     zbl = {0242.17009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ASENS_1972_4_5_2_217_0}
}
Veldkamp, F. D. The center of the universal enveloping algebra of a Lie algebra in characteristic $p$. Annales scientifiques de l'École Normale Supérieure, Tome 5 (1972) pp. 217-240. doi : 10.24033/asens.1225. http://gdmltest.u-ga.fr/item/ASENS_1972_4_5_2_217_0/

[1] A. Borel, Linear algebraic groups, Benjamin, New York, 1969. | MR 40 #4273 | Zbl 0186.33201

[2] A. Borel and T. A. Springer, Rationality properties of linear algebraic groups, II [Tôhoku Math. J., (2), vol. 20, 1968, p. 443-497]. | MR 39 #5576 | Zbl 0211.53302

[3] A. Borel and J. Tits, Groupes réductifs (Publ. Math. I. H. E. S., vol. 27, 1965, p. 55-150). | Numdam | MR 34 #7527 | Zbl 0145.17402

[4] N. Bourbaki, Groupes et algèbres de Lie, chap. 4, 5, 6, Hermann, Paris, 1968.

[5] C. Chevalley, Certains schémas de groupes semi-simples (Séminaire Bourbaki, 1960-1961, exposé 219). | Numdam | Zbl 0125.01705

[6] H. Freudenthal and H. De Vries, Linear Lie groups, Academic Press, New York, 1969. | MR 41 #5546 | Zbl 0377.22001

[7] R. Godement, Quelques résultats nouveaux de Kostant sur les groupes semi-simples (Séminaire Bourbaki, 1963-1964, exposé 260). | Numdam | Zbl 0135.07001

[8] A. Grothendieck et J. Dieudonné, Éléments de géométrie algébrique, IV (seconde partie) (Publ. Math. I. H. E. S., vol. 24, 1965). | Numdam | Zbl 0135.39701

[9] J. E. Humphreys, Modular representations of classical Lie algebras and semisimple groups (J. Algebra, vol. 19, 1971, p. 51-79). | MR 44 #271 | Zbl 0219.17003

[10] N. Jacobson, Lie algebras, Interscience, New York, 1962. | Zbl 0121.27504

[11] N. Jacobson, Lectures in abstract algebra, III, Van Nostrand, Princeton, 1964. | Zbl 0124.27002

[12] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group (Amer. J. Math., vol. 81, 1959, p. 973-1032). | MR 22 #5693 | Zbl 0099.25603

[13] B. Kostant, Lie group representations on polynomial rings (Ibid., vol. 85, 1963, p. 327-404). | MR 28 #1252 | Zbl 0124.26802

[14] D. Mumford, Introduction to algebraic geometry (Preliminary version), Dept. Math., Harvard University.

[15] A. N. Rudakov, On representations of classical semisimple Lie algebras of characteristic p (Math. of the U. S. S. R.-Izvestija, vol. 4, 1970, p. 741-750). | MR 42 #1872 | Zbl 0242.17005

[16] Séminaire «Sophus Lie», Théorie des algèbres de Lie. Topologie des groupes de Lie, Paris, 1954-1955. | Zbl 0068.02102

[17] T. A. Springer, Some arithmetical results on semi-simple Lie algebras (Publ. Math. I. H. E. S., vol. 30, 1966, p. 115-141). | Numdam | MR 34 #5993 | Zbl 0156.27002

[18] T. A. Springer and R. Steinberg, Conjugacy classes. In: A BOREL et al., Seminar on algebraic groups and related finite groups (Lecture Notes in Math., vol. 131, Springer Verlag, Berlin, etc. 1970). | MR 42 #3091 | Zbl 0192.36201 | Zbl 0249.20024

[19] R. Steinberg, Prime power representations of finite linear groups, II (Can. J. Math., vol. 9, 1957, p. 347-351). | MR 19,387d | Zbl 0079.25601

[20] R. Steinberg, Representations of algebraic groups (Nagoya Math. J., vol. 22, 1963, p. 33-56). | MR 27 #5870 | Zbl 0271.20019

[21] R. Steinberg, Regular elements of semisimple algebraic groups (Publ. Math. I. H. E. S., vol. 25, 1965, p. 49-80). | Numdam | MR 31 #4788 | Zbl 0136.30002

[22] R. Steinberg, Lectures on Chevalley groups (Mimeographed notes, Yale University, 1967). | Zbl 1196.22001

[23] D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras (Dissertation, Yale University, 1966).

[24] H. Zassenhaus, The representations of Lie algebras of prime characteristic (Proc. Glasgow Math. Ass., vol. 2, 1954, p. 1-36). | MR 16,108c | Zbl 0059.03001