@article{ASENS_1968_4_1_4_459_0, author = {Segal, Irving}, title = {Dispersion for non-linear relativistic equations. II}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, volume = {1}, year = {1968}, pages = {459-497}, doi = {10.24033/asens.1170}, mrnumber = {39 \#5109}, zbl = {0179.42302}, language = {en}, url = {http://dml.mathdoc.fr/item/ASENS_1968_4_1_4_459_0} }
Segal, Irving. Dispersion for non-linear relativistic equations. II. Annales scientifiques de l'École Normale Supérieure, Tome 1 (1968) pp. 459-497. doi : 10.24033/asens.1170. http://gdmltest.u-ga.fr/item/ASENS_1968_4_1_4_459_0/
[1] Asymptotic decay of solutions to the relativistic wave equation..., Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1964.
,[2] Lebesgue spaces of differentiable functions and distributions (Proc. Symp. Pure Math., vol. IV, 1961, p. 33-49 ; Amer. Math. Soc., Providence). | MR 26 #603 | Zbl 0195.41103
,[3] The wave operator and Lp norms (J. Math. Mech., vol. 12, 1963, p. 55-63). | MR 26 #4043 | Zbl 0127.31705
,[4] Asymptotic behavior of certain fundamental solutions to the Klein-Gordon equation, Doctoral dissertation, Department of Mathematics, M.I.T., Cambridge, Mass., 1966.
,[5] Quantization and dispersion for non-linear relativistic equations, p. 79-108 ; Proc. Conf. on Math. Theory of El. Particles, publ. M.I.T. Press, Cambridge, Mass., 1966. | MR 36 #542
,[6] Differential operators in the manifold of solutions of a non-linear differential equation (J. Math. pures et appl., t. 44, 1965, p. 71-132). | MR 33 #594 | Zbl 0139.09202
,[7] The global Cauchy problem for a relativistic scalar field with power interaction (Bull. Soc. Math. Fr., t. 91, 1963, p. 129-135). | Numdam | MR 27 #3928 | Zbl 0178.45403
,[8] Non-linear semi-groups (Ann. Math., vol. 78, 1963, p. 339-364). | MR 27 #2879 | Zbl 0204.16004
,[9] La décroissance asymptotique des solutions des équations d'onde non linéaires (C. R. Acad. Sc., t. 256, 1963, p. 2749-2750) ; Les opérateurs d'onde pour les équations d'onde non linéaires indépendantes du temps (Ibid., t. 256, 1963, p. 5045-5046). | Zbl 0115.08401
,[10]
, To appear in J. Functional Analysis.[11] | MR 16,432j
and , Phys. Rev., vol. 96, 1954, p. 191.