Multiplicité et norme d'un idéal fractionnaire et régulier
Picavet-L'hermitte, Martine
Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 94 (1989), p. 1-46 / Harvested from Numdam
Publié le : 1989-01-01
@article{ASCFM_1989__94_25_1_0,
     author = {Picavet-L'hermitte, Martine},
     title = {Multiplicit\'e et norme d'un id\'eal fractionnaire et r\'egulier},
     journal = {Annales scientifiques de l'Universit\'e de Clermont. Math\'ematiques},
     volume = {94},
     year = {1989},
     pages = {1-46},
     mrnumber = {1081384},
     zbl = {0714.13002},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/ASCFM_1989__94_25_1_0}
}
Picavet-L'hermitte, Martine. Multiplicité et norme d'un idéal fractionnaire et régulier. Annales scientifiques de l'Université de Clermont. Mathématiques, Tome 94 (1989) pp. 1-46. http://gdmltest.u-ga.fr/item/ASCFM_1989__94_25_1_0/

[1] H. Bass, Torsion free and projective modules, Trans. Amer. Math. Soc., 102, (1962), 319-327. | MR 140542 | Zbl 0103.02304

[2] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82, (1963), 8-28. | MR 153708 | Zbl 0112.26604

[3] Z.I. Borevitch, I.R. Chafarevitch, Théorie des nombres, Gauthier-villars, Paris, (1967) . | MR 205908 | Zbl 0145.04901

[4] I.S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J ., 17, (1950), 27-42. | MR 33276 | Zbl 0041.36408

[5] E.C. Dade, O. Taussky and H. Zassenhauss, On the theory of orders, in particular on the semi-group of idéal classes and genera of an order in an algebraic number field, Math. Ann., 148, (1962), 31-64. | MR 140544 | Zbl 0113.26504

[6] D.E. Estes, R.M. Guralnick, Module équivalences: local to global, when primitive polynomials represent units, J. Algebra, 77, (1982), 138-157. | MR 665169 | Zbl 0492.13005

[7] A. Fröhlich, J.W. Cassels, Algebraic Number Theory, Academic Press, London, New-York, (1967) | MR 215665 | Zbl 0153.07403

[8] A. Fröhlich, Invariants for modules over commutative separable orders, Quart. J. Math. Oxford, 16, (1965), 193-232. | MR 210697 | Zbl 0192.14002

[9] R. Gilmer, W. Heinzer, On the number of generators of an invertible ideal, J. Algebra, 14, (1970), 139-151. | MR 252377 | Zbl 0186.35201

[10] J. Lipman, Stable ideals and Arf rings, Amer. J. Math., 93 (1971), 649-685 | MR 282969 | Zbl 0228.13008

[11] T.G. Lucas, Two annihilator conditions: Property (A) and (R.C.), Comm. Algebra, 14, (1986), 557-580 | MR 823354 | Zbl 0586.13004

[12] E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, N° 327, Springer-Verlag, Berlin, New-York, (1973) | MR 357391 | Zbl 0264.13012

[13] D.G. Northcott, Lessons on rings, module and multiplicities, Cambridge University Press, (1968) . | MR 231816 | Zbl 0159.33001

[14] D.G. Northcott, Prime ideals and DedeKind orders, Proc. London Math. Soc., 10 (1960), 481-496. | MR 118744 | Zbl 0204.05801

[15] G. Picavet, Propriétes et applications de la notion de contenu, Comm. Alg., 13 (1985), 2231-2265. | MR 801439 | Zbl 0584.13004

[16] M. Picavet, Ordres de Gorenstein, J Ann. Sci. Univ. Clermont II, Ser. Math. 24, (1987),1-32. | Numdam | MR 974413 | Zbl 0685.13009

[17] J. Querre, Idéaux civisoriels d'un anneau de polynômes, J. Algebra, 64, (1980), 270-284. | MR 575795 | Zbl 0441.13012

[18] J.D. Sally, W.V. Vasconceles, Stable rings, J. Pure Appl. Algebra, 4, (1974),319-336. | MR 409430 | Zbl 0284.13010

[19] O. Zariski, P. Samuel, Commutative Algebra, Vol 1, D. Var Nostrand Company, Inc., Princeton, Toronto, New-York, London, (1960) . | MR 120249 | Zbl 0121.27801