Espaces de séries de Dirichlet et leurs opérateurs de composition
Queffélec, Hervé
Annales mathématiques Blaise Pascal, Tome 22 (2015), p. 267-344 / Harvested from Numdam

Ce survol est divisé en trois chapitres : le premier porte sur les propriétés générales des séries de Dirichlet n=1 a n n -s et de leur somme, et présente le point de vue de Bohr (relèvement). Le second étudie les espaces de Hardy-Dirichlet de telles séries sur un demi-plan vertical, avec une application aux systèmes de Riesz. Le troisième enfin porte sur les opérateurs de composition agissant sur ces espaces et leurs nombres d’approximation. Le comportement de ces nombres se révèle assez différent de ceux rencontrés dans le cas des espaces de Hardy classiques.

Publié le : 2015-01-01
DOI : https://doi.org/10.5802/ambp.351
Classification:  47B33,  30B50,  30H10
Mots clés: Dirichlet series, Composition operators, Approximation numbers
@article{AMBP_2015__22_S2_267_0,
     author = {Queff\'elec, Herv\'e},
     title = {Espaces de s\'eries de Dirichlet et leurs op\'erateurs de composition},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {22},
     year = {2015},
     pages = {267-344},
     doi = {10.5802/ambp.351},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AMBP_2015__22_S2_267_0}
}
Queffélec, Hervé. Espaces de séries de Dirichlet et leurs opérateurs de composition. Annales mathématiques Blaise Pascal, Tome 22 (2015) pp. 267-344. doi : 10.5802/ambp.351. http://gdmltest.u-ga.fr/item/AMBP_2015__22_S2_267_0/

[1] Aleman, Alexandru; Olsen, Jan-Fredrik; Saksman, Eero Fourier multipliers for Hardy spaces of Dirichlet series, Int. Math. Res. Not. IMRN (2014) no. 16, pp. 4368-4378 | MR 3250037 | Zbl 1303.42009

[2] Apostol, Tom M. Introduction to analytic number theory, Springer-Verlag, New York-Heidelberg (1998) (Undergraduate Texts in Mathematics) | MR 434929 | Zbl 0335.10001

[3] Bailleul, Maxime Espaces de Banach de séries de Dirichlet et leurs opérateurs de composition, Université d’Artois (France) (2014) (Ph. D. Thesis)

[4] Bailleul, Maxime; Brevig, Ole Fredrik Composition operators on Bohr-Bergman spaces of Dirichlet series (2014) (http://arxiv.org/abs/1409.3017v1)

[5] Bailleul, Maxime; Lefèvre, Pascal Some Banach spaces of Dirichlet series, Studia Math., Tome 226 (2015) no. 1, pp. 17-55 | Article | MR 3322601

[6] Balasubramanian, R.; Calado, B.; Queffélec, H. The Bohr inequality for ordinary Dirichlet series, Studia Math., Tome 175 (2006) no. 3, pp. 285-304 | Article | MR 2261747 | Zbl 1110.30001

[7] Bateman, Paul T.; Diamond, Harold G. Analytic number theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, Monographs in Number Theory, Tome 1 (2004), pp. xiv+360 (An introductory course) | MR 2111739 | Zbl 1074.11001

[8] Bayart, F.; Mouze, A. Division et composition dans l’anneau des séries de Dirichlet analytiques, Ann. Inst. Fourier (Grenoble), Tome 53 (2003) no. 7, pp. 2039-2060 http://aif.cedram.org/item?id=AIF_2003__53_7_2039_0 | Numdam | MR 2044167 | Zbl 1077.32002

[9] Bayart, Frédéric Hardy spaces of Dirichlet series and their composition operators, Monatsh. Math., Tome 136 (2002) no. 3, pp. 203-236 | Article | MR 1919645 | Zbl 1076.46017

[10] Bayart, Frédéric Compact composition operators on a Hilbert space of Dirichlet series, Illinois J. Math., Tome 47 (2003) no. 3, pp. 725-743 http://projecteuclid.org/euclid.ijm/1258138190 | MR 2007233 | Zbl 1059.47023

[11] Bayart, Frédéric; Queffélec, Hervé; Seip, Kristian Approximation numbers of composition operators on H p spaces of Dirichlet series (à paraître dans Ann. Inst. Fourier)

[12] Boas, R. P. Jr. A general moment problem, Amer. J. Math., Tome 63 (1941), pp. 361-370 | MR 3848

[13] Bohr, Harald Über die gleichmäßige Konvergenz Dirichletscher Reihen, J. Reine Angew. Math., Tome 143 (1913), pp. 203-211 | Article | MR 1580881

[14] Bourgin, D. G.; Mendel, C. W. Orthonormal sets of periodic functions of the type {f(nx)}, Trans. Amer. Math. Soc., Tome 57 (1945), pp. 332-363 | MR 12158 | Zbl 0060.17107

[15] Burnol, J.F. (2014) (Communication personnelle)

[16] Carl, Bernd; Stephani, Irmtraud Entropy, compactness and the approximation of operators, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 98 (1990), pp. x+277 | Article | MR 1098497 | Zbl 0705.47017

[17] Cashwell, E. D.; Everett, C. J. The ring of number-theoretic functions, Pacific J. Math., Tome 9 (1959), pp. 975-985 | MR 108510 | Zbl 0092.04602

[18] Cowen, Carl C.; Maccluer, Barbara D. Composition operators on spaces of analytic functions, CRC Press, Boca Raton, FL, Studies in Advanced Mathematics (1995), pp. xii+388 | MR 1397026 | Zbl 0873.47017

[19] Davis, Philip J. Interpolation and approximation, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London (1963), pp. xiv+393 | MR 157156 | Zbl 0329.41010

[20] Ebenstein, Samuel E. Some H p spaces which are uncomplemented in L p , Pacific J. Math., Tome 43 (1972), pp. 327-339 | MR 318793 | Zbl 0281.42017

[21] Finet, Catherine; Queffélec, Hervé; Volberg, Alexander Compactness of composition operators on a Hilbert space of Dirichlet series, J. Funct. Anal., Tome 211 (2004) no. 2, pp. 271-287 | Article | MR 2056832 | Zbl 1070.47013

[22] Garnett, John B. Bounded analytic functions, Springer, New York, Graduate Texts in Mathematics, Tome 236 (2007), pp. xiv+459 | MR 2261424 | Zbl 1106.30001

[23] Gordon, Julia; Hedenmalm, Håkan The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J., Tome 46 (1999) no. 2, pp. 313-329 | Article | MR 1704209 | Zbl 0963.47021

[24] Gosselin, R. P.; Neuwirth, J. H. On Paley-Wiener bases, J. Math. Mech., Tome 18 (1968/69), pp. 871-879 | MR 410250 | Zbl 0177.16502

[25] Hardy, G. H.; Riesz, M. The general theory of Dirichlet’s series, Dover Phenix Editions, Second Edition (2005)

[26] Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers, The Clarendon Press, Oxford University Press, New York (1979), pp. xvi+426 | MR 568909 | Zbl 0058.03301

[27] Hedenmalm, Håkan; Lindqvist, Peter; Seip, Kristian A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0,1), Duke Math. J., Tome 86 (1997) no. 1, pp. 1-37 | Article | MR 1427844 | Zbl 0887.46008

[28] Hedenmalm, Håkan; Lindqvist, Peter; Seip, Kristian Addendum to : “A Hilbert space of Dirichlet series and systems of dilated functions in L 2 (0,1), Duke Math. J., Tome 99 (1999) no. 1, pp. 175-178 | Article | MR 1700745 | Zbl 0953.46015

[29] Helson, Henry Hankel forms and sums of random variables, Studia Math., Tome 176 (2006) no. 1, pp. 85-92 | Article | MR 2263964 | Zbl 1108.43003

[30] Helson, Henry Hankel forms, Studia Math., Tome 198 (2010) no. 1, pp. 79-84 | Article | MR 2640082 | Zbl 1229.47042

[31] Hlawka, Edmund; Schoissengeier, Johannes; Taschner, Rudolf Geometric and analytic number theory, Springer-Verlag, Berlin, Universitext (1991), pp. x+238 (Translated from the 1986 German edition by Charles Thomas) | Article | MR 1123023 | Zbl 0749.11001

[32] Hollenbeck, Brian; Verbitsky, Igor E. Best constants for the Riesz projection, J. Funct. Anal., Tome 175 (2000) no. 2, pp. 370-392 | Article | MR 1780482 | Zbl 0963.42006

[33] Kahane, Jean-Pierre Some random series of functions, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 5 (1985), pp. xiv+305 | MR 833073 | Zbl 0571.60002

[34] Korevaar, Jacob Tauberian theory, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 329 (2004), pp. xvi+483 (A century of developments) | Article | MR 2073637 | Zbl 1056.40002

[35] Li, D. (2014) (Communication orale)

[36] Li, Daniel; Queffélec, Hervé Introduction à l’étude des espaces de Banach, Société Mathématique de France, Paris, Cours Spécialisés [Specialized Courses], Tome 12 (2004), pp. xxiv+627 (Analyse et probabilités. [Analysis and probability theory]) | MR 2124356 | Zbl 1078.46001

[37] Li, Daniel; Queffélec, Hervé; Rodríguez-Piazza, Luis On approximation numbers of composition operators, J. Approx. Theory, Tome 164 (2012) no. 4, pp. 431-459 | Article | MR 2885418 | Zbl 1246.47007

[38] Lindqvist, Peter; Seip, Kristian Note on some greatest common divisor matrices, Acta Arith., Tome 84 (1998) no. 2, pp. 149-154 | MR 1614259 | Zbl 0898.11007

[39] Marcus, Adam W.; Spielman, Daniel A.; Srivastava, Nikhil Interlacing families II : Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. (2), Tome 182 (2015) no. 1, pp. 327-350 | Article | MR 3374963

[40] Mccarthy, John E. Hilbert spaces of Dirichlet series and their multipliers, Trans. Amer. Math. Soc., Tome 356 (2004) no. 3, p. 881-893 (electronic) | Article | MR 1984460 | Zbl 1039.30001

[41] Megretskiĭ, A. V.; Peller, V. V.; Treil, S. R. The inverse spectral problem for self-adjoint Hankel operators, Acta Math., Tome 174 (1995) no. 2, pp. 241-309 | Article | MR 1351320 | Zbl 0865.47015

[42] Montgomery, H. L.; Vaughan, R. C. Hilbert’s inequality, J. London Math. Soc. (2), Tome 8 (1974), pp. 73-82 | MR 337775 | Zbl 0281.10021

[43] Olsen, Jan-Fredrik; Seip, Kristian Local interpolation in Hilbert spaces of Dirichlet series, Proc. Amer. Math. Soc., Tome 136 (2008) no. 1, p. 203-212 (electronic) | Article | MR 2350405 | Zbl 1146.30003

[44] Pietsch, Albrecht Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann., Tome 247 (1980) no. 2, pp. 149-168 | Article | MR 568205 | Zbl 0428.47027

[45] Pólya, George; Szegő, Gábor Problems and theorems in analysis. I, Springer-Verlag, Berlin-New York, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1972) (Series, integral calculus, theory of functions, Translated from the German by D. Aeppli,) | MR 580154

[46] Queffélec, H.; Zuily, C. Analyse pour l’Agrégation, Dunod (2013)

[47] Queffélec, Hervé Composition operators in the Dirichlet series setting, Perspectives in operator theory, Polish Acad. Sci., Warsaw (Banach Center Publ.) Tome 75 (2007), pp. 261-287 | Article | Zbl 1127.47026

[48] Queffélec, Hervé; Queffélec, Martine Diophantine approximation and Dirichlet series, Hindustan Book Agency, New Delhi, Harish-Chandra Research Institute Lecture Notes, Tome 2 (2013), pp. xii+232 | MR 3099268

[49] Queffélec, Hervé; Seip, Kristian Approximation numbers of composition operators on the H 2 space of Dirichlet series, J. Funct. Anal., Tome 268 (2015) no. 6, pp. 1612-1648 | Article | MR 3306358

[50] Ramaré, O. (2013) (Communication personnelle)

[51] Saksman, E. (2012) (Communication personnelle)

[52] Saksman, Eero; Seip, Kristian Integral means and boundary limits of Dirichlet series, Bull. Lond. Math. Soc., Tome 41 (2009) no. 3, pp. 411-422 | Article | MR 2506825 | Zbl 1180.30002

[53] Seip, K. (2014) (Communication personnelle)

[54] Shapiro, H. S.; Shields, A. L. On some interpolation problems for analytic functions, Amer. J. Math., Tome 83 (1961), pp. 513-532 | MR 133446 | Zbl 0112.29701

[55] Shapiro, Joel H. Composition operators and classical function theory, Springer-Verlag, New York, Universitext : Tracts in Mathematics (1993), pp. xvi+223 | Article | MR 1237406 | Zbl 0791.30033

[56] Werner, Dirk Funktionalanalysis, Springer-Verlag, Berlin (2007), pp. xii+501 | MR 1787146 | Zbl 0831.46002

[57] Young, Robert M. An introduction to nonharmonic Fourier series, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, Pure and Applied Mathematics, Tome 93 (1980), pp. x+246 | MR 591684 | Zbl 0493.42001