The objective of this paper is to obtain sharp upper bound to the second Hankel functional associated with the root transform of normalized analytic function belonging to parabolic starlike and uniformly convex functions, defined on the open unit disc in the complex plane, using Toeplitz determinants.
@article{AMBP_2014__21_2_39_0, author = {Vamshee Krishna, D. and Venkateswarlu, B. and RamReddy, T.}, title = {Coefficient inequality for transforms of parabolic starlike and uniformly convex functions}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {21}, year = {2014}, pages = {39-56}, doi = {10.5802/ambp.341}, mrnumber = {3322614}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2014__21_2_39_0} }
Vamshee Krishna, D.; Venkateswarlu, B.; RamReddy, T. Coefficient inequality for transforms of parabolic starlike and uniformly convex functions. Annales mathématiques Blaise Pascal, Tome 21 (2014) pp. 39-56. doi : 10.5802/ambp.341. http://gdmltest.u-ga.fr/item/AMBP_2014__21_2_39_0/
[1] Hankel Determinant for a class of analytic functions involving a generalized linear differential operators, Int. J. Pure Appl. Math., Tome 69(4) (2011), pp. 429 -435 (MR 2847841 | Zbl 1220.30011) | MR 2847841 | Zbl 1220.30011
[2] Functions which map the interior of the unit circle upon simple regions, Annal. of. Math., Tome (2)17 (1915), pp. 12 -22 (MR 1503516 | JFM 45.0672.02) | Article | MR 1503516
[3] Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc.(second series), Tome 26(1) (2003), pp. 63 -71 (MR 2055766 (2005b:30011) | Zbl 1185.30010.) | MR 2055766 | Zbl 1185.30010
[4] Starlikeness associated with parabolic regions, Int. J. Math. Math. Sci., Tome 4 (2005), pp. 561-570 (MR 2172395 (2006d:30011) | Zbl 1077.30011.) | Article | MR 2172395 | Zbl 1077.30011
[5] The Fekete-Szeg coefficient functional for transforms of analytic functions, Bull. Iran. Math. Soc., Tome 35(2) (2009), pp. 119-142 (MR 2642930.) | MR 2642930 | Zbl 1193.30006
[6] Coefficients of parabolic starlike functions of order , World Sci. Publ. River Edge, New Jersey (1995), pp. 23 -36 (1995 MR 1415158 [97 h:30008].) | MR 1415158 | Zbl 0874.30007
[7] Univalent functions, 259, Grundlehren der Mathematischen Wissenschaften, New York, Springer-verlag XIV, 328 (1983) (MR 0708494 | Zbl 0514.30001) | MR 708494 | Zbl 0514.30001
[8] The Hankel determinant of exponential polynomials, Amer. Math. Monthly, Tome 107(6) (2000), pp. 557-560 (MR 1767065 (2001c:15009) | Zbl 0985.15006.) | Article | MR 1767065 | Zbl 0985.15006
[9] On uniformly convex functions, Ann. Polon. Math., Tome 56 (1) (1991), pp. 87 -92 (MR 1145573 (93a:30009) | Zbl 0744.30010.) | MR 1145573 | Zbl 0744.30010
[10] Toeplitz forms and their applications, Second edition. Chelsea Publishing Co., New York (1984) (MR 0890515 | Zbl 0611.47018) | MR 890515 | Zbl 0611.47018
[11] Coefficient inequality for a function whose derivative has a positive real part, J. Inequl. Pure Appl. Math., Tome 7(2) (2006), pp. 1-5 (MR 2221331 | Zbl 1134.30310.) | MR 2221331 | Zbl 1134.30310
[12] Hankel determinant for starlike and convex functions, Int. J. Math. Anal., (Ruse), Tome 4 (no. 13-16) (2007), pp. 619-625 (MR 2370200 | Zbl 1137.30308.) | MR 2370200 | Zbl 1137.30308
[13] The Hankel transform and some of its properties, J. Integer Seq., Tome 4 (1) (2001), pp. 1-11 (MR 1848942 | Zbl 0978.15022.) | MR 1848942 | Zbl 0978.15022
[14] Coefficient bounds for the inverse of a function with derivative in , Proc. Amer. Math. Soc., Tome 87 (1983), pp. 251-257 (MR 0681830 | Zbl 0488.30010.) | MR 681830 | Zbl 0488.30010
[15] Uniformly convex functions, Ann. Polon. Math., Tome 57(2) (1992), pp. 165 -175 (MR 1182182.) | MR 1182182 | Zbl 0760.30004
[16] On the second Hankel determinant of areally mean - Valent functions, Trans. Amer. Math. Soc., Tome 223(2) (1992), pp. 337 -346 (MR 0422607 | Zbl 0346.30012) | MR 422607 | Zbl 0346.30012
[17] Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., Tome 28(8) (1983), pp. 731 -739 (MR 0725316 | Zbl 0524.30008.) | MR 725316 | Zbl 0524.30008
[18] On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., Tome 41 (1966), pp. 111-122 (MR 0185105 | Zbl 0138.29801.) | Article | MR 185105 | Zbl 0138.29801
[19] Univalent functions, Vandenhoeck and Ruprecht, Gottingen (1975) (MR 0507768 | Zbl 0298.30014.) | MR 507768 | Zbl 0298.30014
[20] A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie - Sklodowska Sect. A., Tome 47 (1993), pp. 123 -134 (MR 1344982 | Zbl 0879.30004.) | MR 1344982 | Zbl 0879.30004
[21] Orthogonal polynomials on the unit circle, Part 1. Classical theory, AMS Colloquium Publ. 54, Part 1, American Mathematical Society, Providence, RI (2005) (MR 2105088| Zbl 1082.42020) | MR 2105088 | Zbl 1082.42021
[22] Coefficient inequality for uniformly convex functions of order , J. Adv. Res. Pure Math., Tome 5(1) (2013), pp. 25-41 (MR 3020966.) | Article | MR 3020966