Distributions of truncations of the heat kernel on the complex projective space
Demni, Nizar
Annales mathématiques Blaise Pascal, Tome 21 (2014), p. 1-20 / Harvested from Numdam

Let (U t ) t0 be a Brownian motion valued in the complex projective space P N-1 . Using unitary spherical harmonics of homogeneous degree zero, we derive the densities of |U t 1 | 2 and of (|U t 1 | 2 ,|U t 2 | 2 ), and express them through Jacobi polynomials in the simplices of and 2 respectively. More generally, the distribution of (|U t 1 | 2 ,,|U t k | 2 ),2kN-1 may be derived using the decomposition of the unitary spherical harmonics under the action of the unitary group 𝒰(N-k+1) yet computations become tedious. We also revisit the approach initiated in [13] and based on a partial differential equation (hereafter pde) satisfied by the Laplace transform of the density. When k=1, we invert the Laplace transform and retrieve the expression already derived using spherical harmonics. For general 1kN-2, integrations by parts performed on the pde lead to a heat equation in the simplex of k .

Publié le : 2014-01-01
DOI : https://doi.org/10.5802/ambp.339
@article{AMBP_2014__21_2_1_0,
     author = {Demni, Nizar},
     title = {Distributions of truncations of the heat kernel on the complex projective space},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {21},
     year = {2014},
     pages = {1-20},
     doi = {10.5802/ambp.339},
     mrnumber = {3322612},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2014__21_2_1_0}
}
Demni, Nizar. Distributions of truncations of the heat kernel on the complex projective space. Annales mathématiques Blaise Pascal, Tome 21 (2014) pp. 1-20. doi : 10.5802/ambp.339. http://gdmltest.u-ga.fr/item/AMBP_2014__21_2_1_0/

[1] Aktas, R.; Xu, Y. Sobolev orthogonal polynomials on a simplex, Int. Math. Res. Notice, Tome 13 (2013), pp. 3087-3131 | MR 3073001

[2] Andrews, G. E.; Askey, R.; Roy, R. Special functions, Cambridge University Press, Cambridge (1999) | MR 1688958 | Zbl 1075.33500

[3] Bakry, D. Remarques sur les semi-groupes de Jacobi, Hommage à P. André Meyer et J. Neveu. Astérisque, Tome 236 (1996), pp. 23-39 | MR 1417973 | Zbl 0859.47026

[4] Benabdallah, A. Noyau de diffusion sur les espaces homogènes compacts, Bull. Soc. Math. France, Tome 101 (1973), pp. 265-283 | Numdam | MR 358874 | Zbl 0281.35046

[5] Berger, M.; Gauduchon, P.; Mazet, E. Le spectre d’une variété Riemannienne, Lecture Notes in Mathematics, Springer-Verlag (1971), pp. vii+251 pp | MR 282313 | Zbl 0223.53034

[6] Dunkl, C.; Xu, Y. Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge (2001) | MR 1827871 | Zbl 0964.33001

[7] Gasper, G. Banach algebras for Jacobi series and positivity of a kernel, Ann. Math., Tome 95 (1972), pp. 261-280 | Article | MR 310536 | Zbl 0236.33013

[8] Grinberg, E. L. Spherical harmonics and integral geometry on projective spaces, Trans. Amer. Math. Soc., Tome 279 (1983), pp. 187-203 | Article | MR 704609 | Zbl 0518.43006

[9] Hiai, F.; Petz, D. The Semicircle Law, Free Random Variables and Entropy, A. M. S. Tome 77 (2000), pp. x+376 pp | MR 1746976 | Zbl 0955.46037

[10] Karlin, S. P.; Mcgregor, G. Classical diffusion processes and total positivity, J. Math. Anal. Appl., Tome 1 (1960), pp. 163-183 | Article | MR 121844 | Zbl 0101.11102

[11] Koornwinder, T. The addition formula for Jacobi polynomials II. The Laplace type integral and the product formula, Report TW 133/72. Mathematisch Centrum, Amsterdam (1972) | Zbl 0247.33018

[12] Koornwinder, T. The addition formula for Jacobi polynomials III. Completion of the proof, Report TW 135/72. Mathematisch Centrum, Amsterdam (1972) | Zbl 0247.33019

[13] Nechita, I.; Pellegrini, C. Random pure quantum states via unitary Brownian motion, Electron. Commun. Probab, Tome 18 (2013), pp. 1-13 | Article | MR 3056064

[14] Vilenkin, N. Ya. Fonctions spéciales et théorie de la représentation des groupes, Monographies Universitaires de Mathématiques, Dunod Tome 33 (1969) | Zbl 0172.18405

[15] Watson, G. N. A treatise on the theory of Bessel functions, Cambridge University Press (1995) | MR 1349110 | Zbl 0849.33001