Nous définissons le concept d’identité polynomiale pour une algèbre-comodule sur une algèbre de Hopf . Nous présentons des identités polynomiales explicites distinguant à isomorphisme près les objets galoisiens d’une algèbre de Taft ou de l’algèbre de Hopf .
We define polynomial -identities for comodule algebras over a Hopf algebra and establish general properties for the corresponding -ideals. In the case is a Taft algebra or the Hopf algebra , we exhibit a finite set of polynomial -identities which distinguish the Galois objects over up to isomorphism.
@article{AMBP_2013__20_2_175_0, author = {Kassel, Christian}, title = {Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {20}, year = {2013}, pages = {175-191}, doi = {10.5802/ambp.325}, zbl = {1292.16024}, mrnumber = {3138028}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2013__20_2_175_0} }
Kassel, Christian. Examples of polynomial identities distinguishing the Galois objects over finite-dimensional Hopf algebras. Annales mathématiques Blaise Pascal, Tome 20 (2013) pp. 175-191. doi : 10.5802/ambp.325. http://gdmltest.u-ga.fr/item/AMBP_2013__20_2_175_0/
[1] Simple -graded algebras and their polynomial identities, Trans. Amer. Math. Soc., to appear (arXiv:1107.4713)
[2] Graded identities of matrix algebras and the universal graded algebra, Trans. Amer. Math. Soc., Tome 362 (2010), pp. 3125-3147 | Article | MR 2592949 | Zbl 1203.16020
[3] Polynomial identities and noncommutative versal torsors, Adv. Math., Tome 218 (2008), pp. 1453-1495 | Article | MR 2419929 | Zbl 1152.16026
[4] Minimal identities for algebras, Proc. Amer. Math. Soc., Tome 1 (1950), pp. 449-463 | Article | MR 36751 | Zbl 0040.01101
[5] Identities of algebras with actions of Hopf algebras, J. Algebra, Tome 202 (1998), pp. 634-654 | Article | MR 1617671 | Zbl 0912.16009
[6] Identities of graded algebras, J. Algebra, Tome 205 (1998), pp. 1-12 | Article | MR 1631298 | Zbl 0920.16011
[7] Constructing pointed Hopf algebras by Ore extensions, J. Algebra, Tome 225 (2000) no. 2, pp. 743-770 | Article | MR 1741560 | Zbl 0948.16026
[8] Cocharacter sequences for algebras with Hopf algebra actions, J. Algebra, Tome 185 (1996), pp. 869-885 | Article | MR 1419727 | Zbl 0864.16019
[9] Galois and bigalois objects over monomial non-semisimple Hopf algebras, J. Algebra Appl., Tome 5 (2006), pp. 653-680 | Article | MR 2269410 | Zbl 1117.16025
[10] Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras, J. Pure Appl. Algebra, Tome 204 (2006), pp. 627-665 | Article | MR 2185622 | Zbl 1084.16028
[11] Monomial Hopf algebras, J. Algebra, Tome 275 (2004), pp. 212-232 | Article | MR 2047446 | Zbl 1071.16030
[12] Quaternion algebras and Hopf crossed products, Comm. Algebra, Tome 23 (1995), pp. 3291-3325 | Article | MR 1335303 | Zbl 0833.16036
[13] Identities and isomorphisms of graded simple algebras, Linear Algebra Appl., Tome 432 (2010), pp. 3141-3148 | Article | MR 2639274 | Zbl 1194.16016
[14] Cleft extensions for a Hopf algebra generated by a nearly primitive element, Comm. Algebra, Tome 22 (1994), pp. 4537-4559 | Article | MR 1284344 | Zbl 0809.16046
[15] Hopf algebras and their actions on rings, Amer. Math. Soc., Providence (1993) | MR 1243637 | Zbl 0793.16029
[16] Cleft extensions for a class of pointed Hopf algebras constructed by Ore extensions, Comm. Algebra, Tome 29 (2001), pp. 1959-1981 | Article | MR 1837954 | Zbl 0991.16034
[17] Quasitriangular structures for some pointed Hopf algebras of dimension , Comm. Algebra, Tome 27 (1999), pp. 4929-4942 | Article | MR 1701714 | Zbl 0943.16019
[18] Polynomial identities in ring theory, Academic Press, Inc., New York–London (1980) | MR 576061 | Zbl 0461.16001
[19] Hopf algebras, W. A. Benjamin, Inc., New York (1969) | MR 252485 | Zbl 0194.32901
[20] The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A., Tome 68 (1971), pp. 2631-2633 | Article | MR 286868 | Zbl 0222.16012