Ce papier discute quelques problèmes inverses et de contrôle pour des systèmes de type Navier-Stokes. On insiste sur quelques aspects de nature à la fois théorique et numérique ayant menés récemment à des résultats nouveaux : Problèmes inverses géométriques, Contrôlabilité Eulérienne et Lagrangienne, Réduction de tourbillons par optimisation de forme, etc.
This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.
@article{AMBP_2013__20_1_101_0, author = {Fern\'andez-Cara, Enrique and Horsin, Thierry and Kasumba, Henry}, title = {Some inverse and control problems for fluids}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {20}, year = {2013}, pages = {101-138}, doi = {10.5802/ambp.323}, zbl = {1290.35325}, mrnumber = {3112241}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2013__20_1_101_0} }
Fernández-Cara, Enrique; Horsin, Thierry; Kasumba, Henry. Some inverse and control problems for fluids. Annales mathématiques Blaise Pascal, Tome 20 (2013) pp. 101-138. doi : 10.5802/ambp.323. http://gdmltest.u-ga.fr/item/AMBP_2013__20_1_101_0/
[1] Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Tome 29 (2000) no. 4, pp. 755-806 | Numdam | MR 1822407 | Zbl 1034.35148
[2] Identification of immersed obstacles via boundary measurements, Inverse Problems, Tome 21 (2005) no. 5, pp. 1531-1552 | Article | MR 2173409 | Zbl 1088.35080
[3] On some inverse geometrical problems, Partial differential equation methods in control and shape analysis (Pisa), Dekker, New York (Lecture Notes in Pure and Appl. Math.) Tome 188 (1997), pp. 11-27 | MR 1452881 | Zbl 0881.35122
[4] Studies in linear and non-linear programming, Stanford University Press, Stanford, Calif., With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Sciences, vol. II (1958) | MR 108399 | Zbl 0091.16002
[5] Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., Tome 21 (2011) no. 10, pp. 2069-2101 | Article | MR 2851707 | Zbl 1239.35182
[6] The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow, SIAM J. Control Optim., Tome 35 (1997) no. 2, pp. 626-640 | Article | MR 1436642 | Zbl 0873.76019
[7] On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree, Inverse Problems, Tome 27 (2011) no. 5, pp. 055012, 19 | Article | MR 2793831 | Zbl 1217.35208
[8] Uniform controllability properties for space/time-discretized parabolic equations, Numer. Math., Tome 118 (2011) no. 4, pp. 601-661 | Article | MR 2822494 | Zbl 1222.93029
[9] Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., Tome 32 (2001) no. 5, p. 963-986 (electronic) | Article | MR 1828313 | Zbl 0981.35096
[10] On exact and approximate boundary controllabilities for the heat equation: a numerical approach, J. Optim. Theory Appl., Tome 82 (1994) no. 3, pp. 429-484 | Article | MR 1290658 | Zbl 0825.93316
[11] Continuum thermomechanics, Birkhäuser Verlag, Basel, Progress in Mathematical Physics, Tome 43 (2005) | MR 2145925 | Zbl 1070.74001
[12] Numerical null controllability of the wave equation through primal method and Carleman estimates, ESAIM: COCV, Tome (to appear, 2013) no. 3 | Zbl 1292.35162
[13] On the numerical null controllability of the Stokes and Navier-Stokes systems, In preparation (2013)
[14] On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems, Tome 28 (2012) no. 1, pp. 015005, 22 | Article | MR 2864506 | Zbl 1235.76021
[15] On the controllability of the -D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var., Tome 1 (1995/96), p. 35-75 (electronic) | Article | Numdam | MR 1393067 | Zbl 0872.93040
[16] On the controllability of -D incompressible perfect fluids, J. Math. Pures Appl. (9), Tome 75 (1996) no. 2, pp. 155-188 | MR 1380673 | Zbl 0848.76013
[17] Global exact controllability of the D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys., Tome 4 (1996) no. 4, pp. 429-448 | MR 1470445 | Zbl 0938.93030
[18] A geometric inverse problem for the Boussinesq system, Discrete Contin. Dyn. Syst. Ser. B, Tome 6 (2006) no. 6, pp. 1213-1238 | Article | MR 2240741 | Zbl 1116.35116
[19] On the identification of a single body immersed in a Navier-Stokes fluid, European J. Appl. Math., Tome 18 (2007) no. 1, pp. 57-80 | Article | MR 2335200 | Zbl 1142.35101
[20] On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Complut., Tome 23 (2010) no. 1, pp. 163-190 | Article | MR 2578577 | Zbl 1191.35161
[21] General laws of the motion of fluids, Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza (1999) no. 6, pp. 26-54 | MR 1754941 | Zbl 0955.76500
[22] Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems, ESAIM Contrôle Optim. Calc. Var., Tome 1 (1995/96), p. 267-302 (electronic) | Article | Numdam | MR 1418484 | Zbl 0872.93039
[23] Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), Tome 83 (2004) no. 12, pp. 1501-1542 | Article | MR 2103189 | Zbl 1267.93020 | Zbl pre02164954
[24] Some controllability results for the -dimensional Navier-Stokes and Boussinesq systems with scalar controls, SIAM J. Control Optim., Tome 45 (2006) no. 1, p. 146-173 (electronic) | Article | MR 2225301 | Zbl 1109.93006
[25] Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods, Math. Control Relat. Fields, Tome 2 (2012) no. 3, pp. 217-246 | Article | MR 2991568 | Zbl 1264.35260 | Zbl pre06104981
[26] Strong convergent approximations of null controls for the 1D heat equation, SeMA Journal, Tome 61 (2013) no. 1, pp. 49-78 | Article | Zbl 1263.35121 | Zbl pre06151337
[27] Mathematical geoscience, Springer, London, Interdisciplinary Applied Mathematics, Tome 36 (2011) | Article | MR 2760029 | Zbl 1219.86001
[28] Exact controllability and feedback stabilization from a boundary for the Navier-Stokes equations, Control of fluid flow, Springer, Berlin (Lecture Notes in Control and Inform. Sci.) Tome 330 (2006), pp. 173-188 | Article | MR 2243525 | Zbl 1161.76467
[29] Optimal control problems for the Navier-Stokes equations, Lectures on applied mathematics (Munich, 1999), Springer, Berlin (2000), pp. 143-155 | MR 1767769 | Zbl 0962.49003
[30] Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, Tome 54 (1999) no. 3(327), pp. 93-146 | Article | MR 1728643 | Zbl 0970.35116
[31] Controllability of evolution equations, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, Lecture Notes Series, Tome 34 (1996) | MR 1406566 | Zbl 0862.49004
[32] Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, J. Math. Pures Appl. (9), Tome 93 (2010) no. 1, pp. 61-90 | Article | MR 2579376 | Zbl 1180.35531
[33] Prescribing the Motion of a Set of Particles in a Three-Dimensional Perfect Fluid, SIAM J. Control Optim., Tome 50 (2012) no. 5, pp. 2726-2742 | Article | MR 3022084 | Zbl 1263.76018 | Zbl pre06137804
[34] Numerical methods for nonlinear variational problems, Springer-Verlag, Berlin, Scientific Computation (2008) (Reprint of the 1984 original) | MR 2423313 | Zbl 1139.65050
[35] Exact and approximate controllability for distributed parameter systems, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 117 (2008) (A numerical approach) | Article | MR 2404764 | Zbl 1142.93002
[36] Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal., Tome 8 (2009) no. 1, pp. 311-333 | Article | MR 2449112 | Zbl 1152.93005
[37] Perspectives in flow control and optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Advances in Design and Control, Tome 5 (2003) | MR 1946726 | Zbl 1088.93001
[38] Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim., Tome 40 (2001) no. 3, p. 925-946 (electronic) | Article | MR 1871460 | Zbl 1012.49026
[39] Application of the exact null controllability of the heat equation to moving sets, C. R. Math. Acad. Sci. Paris, Tome 342 (2006) no. 11, pp. 849-852 | Article | MR 2224634 | Zbl 1138.93013
[40] Local exact Lagrangian controllability of the Burgers viscous equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Tome 25 (2008) no. 2, pp. 219-230 | Article | Numdam | MR 2396520 | Zbl 1145.35330
[41] Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., Tome 6 (2001), p. 39-72 (electronic) | Article | Numdam | MR 1804497 | Zbl 0961.35104
[42] Inverse problems for partial differential equations, Springer, New York, Applied Mathematical Sciences, Tome 127 (2006) | MR 2193218 | Zbl 1092.35001
[43] On free surface PDE constrained shape optimization problems, Appl. Math. Comput., Tome 218 (2012) no. 23, pp. 11429-11450 | Article | MR 2943988 | Zbl 1278.49051
[44] Vortex control in channel flows using translational invariant cost functionals, Comput. Optim. Appl., Tome 52 (2012) no. 3, pp. 691-717 | Article | MR 2950502 | Zbl 1258.49070
[45] On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal., Tome 25 (1967), pp. 188-200 | Article | MR 211057 | Zbl 0166.45302
[46] Convergence rates of the Hilbert uniqueness method via Tikhonov regularization, J. Optim. Theory Appl., Tome 103 (1999) no. 3, pp. 657-673 | Article | MR 1727248 | Zbl 0943.65109
[47] Carleman estimates for coefficient inverse problems and numerical applications, VSP, Utrecht, Inverse and Ill-posed Problems Series (2004) | Article | MR 2126149 | Zbl 1069.65106
[48] Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Priložen., Tome 5 (1971) no. 2, pp. 72-76 | MR 368067 | Zbl 0236.57016
[49] Optimal vortex reduction for instationary flows based on translation invariant cost functionals, SIAM J. Control Optim., Tome 46 (2007) no. 4, pp. 1368-1397 | Article | MR 2346385 | Zbl 1159.35398
[50] Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., Tome 55 (2006) no. 7, pp. 597-609 | Article | MR 2225370 | Zbl 1129.93324
[51] Oeuvres. Tome 14, Gauthier-Villars (Paris), Hildesheim (1967–1892) (Publiées par les soins de J.-A. Serret [et G. Darboux] ; [Précédé d’une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre])
[52] Regularity issues for the null-controllability of the linear 1-d heat equation, Systems Control Lett., Tome 60 (2011) no. 6, pp. 406-413 | Article | MR 2841484 | Zbl 1225.93027
[53] Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Problems, Tome 26 (2010) no. 8, pp. 085018, 39 | Article | MR 2661697 | Zbl 1203.35015
[54] Numerical methods for solving inverse problems of mathematical physics, Walter de Gruyter GmbH & Co. KG, Berlin, Inverse and Ill-posed Problems Series (2007) | Article | MR 2381619 | Zbl 1136.65105
[55] A control theoretic approach to the swimming of microscopic organisms, Quart. Appl. Math., Tome 65 (2007) no. 3, pp. 405-424 | MR 2354880 | Zbl 1135.76058
[56] Shape reconstruction of an inverse boundary value problem of two-dimensional Navier-Stokes equations, Internat. J. Numer. Methods Fluids, Tome 62 (2010) no. 6, pp. 632-646 | Article | MR 2605011 | Zbl 05668336 | Zbl pre05668336