Rankin–Cohen brackets and representations of conformal Lie groups
[Crochets de Rankin-Cohen et représentations des groupes de Lie conformes]
Pevzner, Michael
Annales mathématiques Blaise Pascal, Tome 19 (2012), p. 455-484 / Harvested from Numdam

Ce texte est une version étendue d’un cours donné par l’auteur lors de l’école d’été Formes quasimodulaires et applications qui s’est tenue à Besse en juin 2010.

L’objectif principal de ce travail est de présenter les crochets de Rankin-Cohen dans le cadre de la théorie des représentations unitaires des groupes de Lie conformes et d’expliquer des résultats récents sur leurs analogues pour des groupes de Lie de rang supérieur. Diverses identités que vérifient de tels opérateurs bi-différentiels covariants seront expliquées en terme de l’associativité d’un produit non commutatif induit sur l’ensemble des formes modulaires holomorphes par la quantification covariante de l’espace symétrique para-hermitien associé.

This is an extended version of a lecture given by the author at the summer school “Quasimodular forms and applications” held in Besse in June 2010.

The main purpose of this work is to present Rankin-Cohen brackets through the theory of unitary representations of conformal Lie groups and explain recent results on their analogues for Lie groups of higher rank. Various identities verified by such covariant bi-differential operators will be explained by the associativity of a non-commutative product induced on the set of holomorphic modular forms by a covariant quantization of the associate para-Hermitian symmetric space.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/ambp.319
Classification:  11F11,  22E46,  47L80
Mots clés: Crochets de Rankin-Cohen, représentations unitaires, groupes conformes, quantisation covariante
@article{AMBP_2012__19_2_455_0,
     author = {Pevzner, Michael},
     title = {Rankin--Cohen brackets and representations of conformal Lie groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     year = {2012},
     pages = {455-484},
     doi = {10.5802/ambp.319},
     zbl = {1283.11072},
     mrnumber = {3025141},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2012__19_2_455_0}
}
Pevzner, Michael. Rankin–Cohen brackets and representations of conformal Lie groups. Annales mathématiques Blaise Pascal, Tome 19 (2012) pp. 455-484. doi : 10.5802/ambp.319. http://gdmltest.u-ga.fr/item/AMBP_2012__19_2_455_0/

[1] Ban, Katsuma On Rankin-Cohen-Ibukiyama operators for automorphic forms of several variables, Comment. Math. Univ. St. Pauli, Tome 55 (2006) no. 2, pp. 149-171 | MR 2294926 | Zbl 1137.11034

[2] Choie, Y.; Mourrain, B.; Solé, P. Rankin-Cohen brackets and invariant theory, J. Algebraic Combin., Tome 13 (2001) no. 1, pp. 5-13 | Article | MR 1817700 | Zbl 1039.11024

[3] Cohen, Henri Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann., Tome 217 (1975) no. 3, pp. 271-285 | Article | MR 382192 | Zbl 0311.10030

[4] Cohen, Paula Beazley; Manin, Yuri; Zagier, Don Automorphic pseudodifferential operators, Algebraic aspects of integrable systems, Birkhäuser Boston, Boston, MA (Progr. Nonlinear Differential Equations Appl.) Tome 26 (1997), pp. 17-47 | MR 1418868 | Zbl 1055.11514

[5] Connes, Alain; Moscovici, Henri Modular Hecke algebras and their Hopf symmetry, Mosc. Math. J., Tome 4 (2004) no. 1, p. 67-109, 310 | MR 2074984 | Zbl 1122.11023

[6] Connes, Alain; Moscovici, Henri Rankin-Cohen brackets and the Hopf algebra of transverse geometry, Mosc. Math. J., Tome 4 (2004) no. 1, p. 111-130, 311 | MR 2074985 | Zbl 1122.11024

[7] Van Dijk, Gerrit; Pevzner, Michael Ring structures for holomorphic discrete series and Rankin-Cohen brackets, J. Lie Theory, Tome 17 (2007) no. 2, pp. 283-305 | MR 2325700 | Zbl 1123.22009

[8] Eholzer, Wolfgang; Ibukiyama, Tomoyoshi Rankin-Cohen type differential operators for Siegel modular forms, Internat. J. Math., Tome 9 (1998) no. 4, pp. 443-463 | Article | MR 1635181 | Zbl 0919.11037

[9] El Gradechi, Amine M. The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators, Adv. Math., Tome 207 (2006) no. 2, pp. 484-531 | Article | MR 2271014 | Zbl 1161.11331

[10] Faraut, Jacques; Korányi, Adam Analysis on symmetric cones, The Clarendon Press Oxford University Press, New York, Oxford Mathematical Monographs (1994) (Oxford Science Publications) | MR 1446489 | Zbl 0841.43002

[11] Flensted-Jensen, Mogens Discrete series for semisimple symmetric spaces, Ann. of Math. (2), Tome 111 (1980) no. 2, pp. 253-311 | Article | MR 569073 | Zbl 0462.22006

[12] Gordan, P. Vorlesungen über Invariantentheorie. Herausgegeben von G. Kerschensteiner. Zweiter Band: Binäre Formen. 360 S., Leipzig. Teubner (1887) | MR 917266

[13] Gundelfinger, S. Zur Theorie der binären Formen., J. Reine Angew. Math (1887), pp. 413-424

[14] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Pure and Applied Mathematics, Tome 80 (1978) | MR 514561 | Zbl 0993.53002

[15] Howe, Roger; Tan, Eng-Chye Nonabelian harmonic analysis, Springer-Verlag, New York, Universitext (1992) (Applications of SL ( 2 , ) ) | Article | MR 1151617 | Zbl 0768.43001

[16] Kaneyuki, Soji; Kozai, Masato Paracomplex structures and affine symmetric spaces, Tokyo J. Math., Tome 8 (1985) no. 1, pp. 81-98 | Article | MR 800077 | Zbl 0585.53029

[17] Kobayashi, Toshiyuki Discrete series representations for the orbit spaces arising from two involutions of real reductive Lie groups, J. Funct. Anal., Tome 152 (1998) no. 1, pp. 100-135 | Article | MR 1600074 | Zbl 0937.22008

[18] Kostant, Bertram On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc., Tome 75 (1969), pp. 627-642 | Article | MR 245725 | Zbl 0229.22026

[19] Ólafsson, G.; Ørsted, B. The holomorphic discrete series for affine symmetric spaces. I, J. Funct. Anal., Tome 81 (1988) no. 1, pp. 126-159 | Article | MR 967894 | Zbl 0678.22008

[20] Olver, Peter J. Classical invariant theory, Cambridge University Press, Cambridge, London Mathematical Society Student Texts, Tome 44 (1999) | Article | MR 1694364 | Zbl 0971.13004

[21] Olver, Peter J.; Sanders, Jan A. Transvectants, modular forms, and the Heisenberg algebra, Adv. in Appl. Math., Tome 25 (2000) no. 3, pp. 252-283 | Article | MR 1783553 | Zbl 1041.11026

[22] Ōshima, Toshio; Matsuki, Toshihiko A description of discrete series for semisimple symmetric spaces, Group representations and systems of differential equations (Tokyo, 1982), North-Holland, Amsterdam (Adv. Stud. Pure Math.) Tome 4 (1984), pp. 331-390 | MR 810636 | Zbl 0577.22012

[23] Peng, Lizhong; Zhang, Genkai Tensor products of holomorphic representations and bilinear differential operators, J. Funct. Anal., Tome 210 (2004) no. 1, pp. 171-192 | Article | MR 2052118 | Zbl 1050.22020

[24] Pevzner, M. Analyse conforme sur les algèbres de Jordan, J. Aust. Math. Soc., Tome 73 (2002) no. 2, pp. 279-299 | Article | MR 1926074 | Zbl 1019.17011

[25] Pevzner, Michael Rankin-Cohen brackets and associativity, Lett. Math. Phys., Tome 85 (2008) no. 2-3, pp. 195-202 | Article | MR 2443940 | Zbl 1167.53075

[26] Repka, Joe Tensor products of holomorphic discrete series representations, Canad. J. Math., Tome 31 (1979) no. 4, pp. 836-844 | Article | MR 540911 | Zbl 0373.22006

[27] Satake, Ichirô Algebraic structures of symmetric domains, Iwanami Shoten, Tokyo, Kanô Memorial Lectures, Tome 4 (1980) | MR 591460 | Zbl 0483.32017

[28] Schmid, Wilfried Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen, Invent. Math., Tome 9 (1969/1970), pp. 61-80 | Article | MR 259164 | Zbl 0219.32013

[29] Strichartz, Robert S. Harmonic analysis on hyperboloids, J. Functional Analysis, Tome 12 (1973), pp. 341-383 | Article | MR 352884 | Zbl 0253.43013

[30] Unterberger, André; Unterberger, Julianne Algebras of symbols and modular forms, J. Anal. Math., Tome 68 (1996), pp. 121-143 | Article | MR 1403254 | Zbl 0857.43015

[31] Zagier, Don Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci., Tome 104 (1994) no. 1, pp. 57-75 (K. G. Ramanathan memorial issue) | Article | MR 1280058 | Zbl 0806.11022

[32] Zhang, Genkai Rankin-Cohen brackets, transvectants and covariant differential operators, Math. Z., Tome 264 (2010) no. 3, pp. 513-519 | Article | MR 2591818 | Zbl 1189.32013