Gravity, strings, modular and quasimodular forms
[Gravité, cordes, formes modulaires et quasimodulaires]
Petropoulos, P. Marios ; Vanhove, Pierre
Annales mathématiques Blaise Pascal, Tome 19 (2012), p. 379-430 / Harvested from Numdam

Les formes modulaires et quasimodulaires ont joué un rôle important dans la théorie de la gravité et la théorie des cordes. Les séries d’Eisenstein sont apparues de façon systématique dans la détermination des spectres. Les fonctions de partitions sont apparues de façon systématique dans la description des effets non perturbatifs, dans les corrections d’ordre supérieur des espaces de champs scalaires,... Ces dernières apparaissent souvent comme des instantons gravitationnels, c’est-à-dire des solutions particulières des équations d’Einstein. Dans ces notes de cours, nous présentons une classe de telles solutions en dimension quatre, obtenues en exigeant l’autodualité (conforme) et l’homogénéité Bianchi IX. Dans ce cas, un large ensemble de configurations existe qui exhibent d’intéressantes propriétés modulaires. Nous donnons d’autres exemples d’espaces d’Einstein qui bien que n’ayant pas de symétrie Bianchi IX possèdent des caractéristiques similaires. Enfin, nous discutons de l’émergence et du rôle des séries d’Eisenstein dans le cadre des développements perturbatifs de la théorie des champs et des cordes. Nous motivons le besoin d’étudier dans ce cadre de nouvelles structures modulaires.

Modular and quasimodular forms have played an important role in gravity and string theory. Eisenstein series have appeared systematically in the determination of spectrums and partition functions, in the description of non-perturbative effects, in higher-order corrections of scalar-field spaces, ...The latter often appear as gravitational instantons i.e. as special solutions of Einstein’s equations. In the present lecture notes we present a class of such solutions in four dimensions, obtained by requiring (conformal) self-duality and Bianchi IX homogeneity. In this case, a vast range of configurations exist, which exhibit interesting modular properties. Examples of other Einstein spaces, without Bianchi IX symmetry, but with similar features are also given. Finally we discuss the emergence and the role of Eisenstein series in the framework of field and string theory perturbative expansions, and motivate the need for unravelling novel modular structures.

@article{AMBP_2012__19_2_379_0,
     author = {Petropoulos, P. Marios and Vanhove, Pierre},
     title = {Gravity, strings, modular and quasimodular~forms},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     year = {2012},
     pages = {379-430},
     doi = {10.5802/ambp.317},
     zbl = {1263.11117},
     mrnumber = {3025139},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2012__19_2_379_0}
}
Petropoulos, P. Marios; Vanhove, Pierre. Gravity, strings, modular and quasimodular forms. Annales mathématiques Blaise Pascal, Tome 19 (2012) pp. 379-430. doi : 10.5802/ambp.317. http://gdmltest.u-ga.fr/item/AMBP_2012__19_2_379_0/

[1] Ablowitz, M. J.; Chakravarty, S.; Halburd, R. G. Integrable systems and reductions of the self-dual Yang-Mills equations, J. Math. Phys., Tome 44 (2003) no. 8, pp. 3147-3173 (Integrability, topological solitons and beyond) | Article | MR 2006746 | Zbl 1062.70050

[2] Ablowitz, M. J.; Clarkson, P. A. Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 149 (1991) | Article | MR 1149378 | Zbl 0762.35001

[3] Acharya, B. S.; O’Loughlin, M. Self-duality in (D8)-dimensional Euclidean gravity, Phys. Rev. D (3), Tome 55 (1997) no. 8, p. R4521-R4524 | Article | MR 1449598

[4] Alexandrov, Sergei Twistor Approach to String Compactifications: a Review (2011) (arXiv:1111.2892v2 [hep-th])

[5] Alexandrov, Sergei; Persson, Daniel; Pioline, Boris On the topology of the hypermultiplet moduli space in type II/CY string vacua, Phys.Rev., Tome D83 (2011), pp. 026001 | Article

[6] Alexandrov, Sergei; Pioline, Boris; Saueressig, Frank; Vandoren, Stefan Linear perturbations of hyperkähler metrics, Lett. Math. Phys., Tome 87 (2009) no. 3, pp. 225-265 | Article | MR 2485482 | Zbl 1169.53035

[7] Alexandrov, Sergei; Pioline, Boris; Saueressig, Frank; Vandoren, Stefan Linear perturbations of quaternionic metrics, Comm. Math. Phys., Tome 296 (2010) no. 2, pp. 353-403 | Article | MR 2608119 | Zbl 1194.53043

[8] Alexandrov, Sergei; Pioline, Boris; Vandoren, Stefan Self-dual Einstein spaces, heavenly metrics, and twistors, J. Math. Phys., Tome 51 (2010) no. 7, pp. 073510, 31 | Article | MR 2681102

[9] Ambrosetti, Nicola; Antoniadis, Ignatios; Derendinger, Jean-Pierre; Tziveloglou, Pantelis The Hypermultiplet with Heisenberg Isometry in N=2 Global and Local Supersymmetry, JHEP, Tome 1106 (2011), pp. 139 | Article | MR 2870800

[10] Antoniadis, Ignatios; Minasian, Ruben; Theisen, Stefan; Vanhove, Pierre String loop corrections to the universal hypermultiplet, Classical Quantum Gravity, Tome 20 (2003) no. 23, pp. 5079-5102 | Article | MR 2024800 | Zbl 1170.83451

[11] Atiyah, M. F.; Hitchin, N. J.; Singer, I. M. Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A, Tome 362 (1978) no. 1711, pp. 425-461 | Article | MR 506229 | Zbl 0389.53011

[12] Atiyah, M.F.; Hitchin, N.J. Low energy scattering of non-Abelian monopoles, Physics Letters A, Tome 107 (1985) no. 1, pp. 21 -25 http://www.sciencedirect.com/science/article/pii/0375960185902385 | Article | MR 778313 | Zbl 1177.53069

[13] Babich, M. V.; Korotkin, D. A. Self-dual SU (2)-invariant Einstein metrics and modular dependence of theta functions, Lett. Math. Phys., Tome 46 (1998) no. 4, pp. 323-337 | Article | MR 1668577 | Zbl 0917.53016

[14] Bakas, I.; Floratos, E. G.; Kehagias, A. Octonionic gravitational instantons, Phys. Lett. B, Tome 445 (1998) no. 1-2, pp. 69-76 | Article | MR 1672574

[15] Bao, Ling; Kleinschmidt, Axel; Nilsson, Bengt E. W.; Persson, Daniel; Pioline, Boris Instanton corrections to the universal hypermultiplet and automorphic forms on SU (2,1), Commun. Number Theory Phys., Tome 4 (2010) no. 1, pp. 187-266 | MR 2679380 | Zbl 1209.81160

[16] Bao, Ling; Kleinschmidt, Axel; Nilsson, Bengt E.W.; Persson, Daniel; Pioline, Boris Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons (2010) (arXiv:1005.4848v1 [hep-th])

[17] Belavin, A. A.; Polyakov, A. M.; Schwartz, A. S.; Tyupkin, Yu. S. Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B, Tome 59 (1975) no. 1, pp. 85-87 | Article | MR 434183

[18] Belinskii, V.A.; Gibbons, G.W.; Page, D.N.; Pope, C.N. Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Physics Letters B, Tome 76 (1978) no. 4, pp. 433 -435 http://www.sciencedirect.com/science/article/pii/0370269378908997 | Article | MR 496343

[19] Bossard, G.; Petropoulos, P.M.; Tripathy, P. Darboux–Halphen system and the action of Geroch group (2012) (Unpublished)

[20] Bourliot, F.; Estes, J.; Petropoulos, P. M.; Spindel, Ph G3-homogeneous gravitational instantons, Classical Quantum Gravity, Tome 27 (2010) no. 10, pp. 105007, 17 | Article | MR 2639106 | Zbl 1190.83020

[21] Bourliot, F.; Estes, J.; Petropoulos, P. M.; Spindel, Ph. Gravitational instantons, self-duality, and geometric flows, Phys. Rev. D, Tome 81 (2010) no. 10, pp. 104001, 5 | Article | MR 2726952

[22] Brecher, D.; Perry, M. J. Ricci-flat branes, Nuclear Phys. B, Tome 566 (2000) no. 1-2, pp. 151-172 | Article | MR 1746217 | Zbl 0953.83041

[23] Broadhurst, D. J.; Kreimer, D. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B, Tome 393 (1997) no. 3-4, pp. 403-412 | Article | MR 1435933 | Zbl 0946.81028

[24] Broadhurst, D. J.; Kreimer, D. Feynman diagrams as a weight system: four-loop test of a four-term relation, Phys. Lett. B, Tome 426 (1998) no. 3-4, pp. 339-346 | Article | MR 1629951 | Zbl 1049.81568

[25] Brown, Francis On the decomposition of motivic multiple zeta values (2011) (arXiv:1102.1310v2 [math.NT])

[26] Brown, Francis C.S. On the periods of some Feynman integrals (2010) (arXiv:0910.0114v2 [math.AG])

[27] Cahen, M.; Debever, R.; Defrise, L. A complex vectorial formalism in general relativity, J. Math. Mech., Tome 16 (1967), pp. 761-785 | MR 207370 | Zbl 0149.23401

[28] Calderbank, D. M. J.; Pedersen, H. Selfdual spaces with complex structures, Einstein-Weyl geometry and geodesics, Ann. Inst. Fourier (Grenoble), Tome 50 (2000) no. 3, pp. 921-963 | Article | Numdam | MR 1779900 | Zbl 0970.53027

[29] Calderbank, David M. J.; Pedersen, Henrik Selfdual Einstein metrics with torus symmetry, J. Differential Geom., Tome 60 (2002) no. 3, pp. 485-521 http://projecteuclid.org/getRecord?id=euclid.jdg/1090351125 | MR 1950174 | Zbl 1067.53034

[30] Chazy, J. Sur les équations différentielles dont l’intégrale générale possède une coupure essentielle mobile., C.R. Acad. Sc. Paris, Tome 150 (1910), pp. 456-458

[31] Chazy, J. Sur les équations différentielles du troisième ordre et d’ordre supérieur dont líntégrale générale a ses points critiques fixes., Acta Math., Tome 34 (1911), pp. 317-385 | Article | MR 1555070

[32] Chow, Bennett; Knopf, Dan The Ricci flow: an introduction, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 110 (2004) | MR 2061425 | Zbl 1086.53085

[33] Coleman, S. Aspects of Symmetry, Cambridge University Press (1985) | Zbl 0575.22023

[34] Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N. Cohomogeneity one manifolds of Spin(7) and G 2 holonomy, Phys. Rev. D (3), Tome 65 (2002) no. 10, pp. 106004, 29 | Article | MR 1919035 | Zbl 1031.53076

[35] Cvetic, Mirjam; Gibbons, G.W.; Lu, H.; Pope, C.N. Bianchi IX selfdual Einstein metrics and singular G(2) manifolds, Class.Quant.Grav., Tome 20 (2003), pp. 4239-4268 | Article | MR 2013229 | Zbl 1048.53033

[36] Darboux, Gaston Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux, Ann. Sci. École Norm. Sup. (2), Tome 7 (1878), p. 101-150, 227–260, 275–348 | Numdam

[37] Deligne, P. Multizêtas [d’après Francis Brown] (Janvier 2012) (Séminaire Bourbaki)

[38] D’Hoker, Eric; Phong, D. H. The box graph in superstring theory, Nuclear Phys. B, Tome 440 (1995) no. 1-2, pp. 24-94 | Article | MR 1336085 | Zbl 0990.81655

[39] Eguchi, Tohru; Gilkey, Peter B.; Hanson, Andrew J. Gravitation, gauge theories and differential geometry, Phys. Rep., Tome 66 (1980) no. 6, pp. 213-393 | Article | MR 598586

[40] Eguchi, Tohru; Hanson, Andrew J. Gravitational instantons, Gen. Relativity Gravitation, Tome 11 (1979) no. 5, pp. 315-320 | Article | MR 563971

[41] Eguchi, Tohru; Hanson, Andrew J. Selfdual Solutions to Euclidean Gravity, Annals Phys., Tome 120 (1979), pp. 82-106 | Article | MR 540896 | Zbl 0409.53020

[42] Ferrara, S.; Sabharwal, S. Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl.Phys., Tome B332 (1990), pp. 317 | Article | MR 1046353

[43] Floratos, E. G.; Kehagias, A. Eight-dimensional self-dual spaces, Phys. Lett. B, Tome 427 (1998) no. 3-4, pp. 283-290 | Article | MR 1629156

[44] Friedan, Daniel Harry Nonlinear Models in Two + Epsilon Dimensions, Annals Phys., Tome 163 (1985), pp. 318 | Article | MR 811072 | Zbl 0583.58010

[45] Gangl, Herbert; Kaneko, Masanobu; Zagier, Don Double zeta values and modular forms, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ (2006), pp. 71-106 | Article | MR 2208210 | Zbl 1122.11057

[46] Geroch, Robert A method for generating solutions of Einstein’s equations, J. Mathematical Phys., Tome 12 (1971), pp. 918-924 | Article | MR 286442 | Zbl 0214.49002

[47] Gibbons, G. W.; Hawking, S. W. Classification of gravitational instanton symmetries, Comm. Math. Phys., Tome 66 (1979) no. 3, pp. 291-310 http://projecteuclid.org/getRecord?id=euclid.cmp/1103905051 | Article | MR 535152

[48] Gibbons, G. W.; Manton, N. S. Classical and quantum dynamics of BPS monopoles, Nuclear Phys. B, Tome 274 (1986) no. 1, pp. 183-224 | Article | MR 850983

[49] Gibbons, G. W.; Pope, C. N. CP 2 as a gravitational instanton, Comm. Math. Phys., Tome 61 (1978) no. 3, pp. 239-248 | Article | MR 503465 | Zbl 0389.53013

[50] Gibbons, G. W.; Pope, C. N. The positive action conjecture and asymptotically Euclidean metrics in quantum gravity, Comm. Math. Phys., Tome 66 (1979) no. 3, pp. 267-290 http://projecteuclid.org/getRecord?id=euclid.cmp/1103905050 | Article | MR 535151

[51] Gibbons, G.W.; Hawking, S.W. Gravitational multi-instantons, Physics Letters B, Tome 78 (1978) no. 4, pp. 430 -432 http://www.sciencedirect.com/science/article/pii/0370269378904781 | Article

[52] Goncharov, A.S. Hodge correlators (2010) (arXiv:0803.0297v2 [math.AG]) | Zbl 1217.14007

[53] Green, Michael B.; Miller, Stephen D.; Russo, Jorge G.; Vanhove, Pierre Eisenstein series for higher-rank groups and string theory amplitudes, Commun.Num.Theor.Phys., Tome 4 (2010), pp. 551-596 | MR 2771579 | Zbl 1218.83034

[54] Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre Low energy expansion of the four-particle genus-one amplitude in type II superstring theory, J. High Energy Phys. (2008) no. 2, pp. 020, 56 | Article | MR 2386025

[55] Green, Michael B.; Schwarz, John H.; Witten, Edward Superstring theory. Vol. 1, Cambridge University Press, Cambridge, Cambridge Monographs on Mathematical Physics (1987) (Introduction) | MR 878143 | Zbl 0619.53002

[56] Green, Michael B.; Schwarz, John H.; Witten, Edward Superstring theory. Vol. 2., Cambridge University Press, Cambridge, Cambridge Monographs on Mathematical Physics (1987) (Loop amplitudes, anomalies and phenomenology) | MR 878144 | Zbl 0619.53002

[57] Green, Michael B.; Vanhove, Pierre The Low-energy expansion of the one loop type II superstring amplitude, Phys.Rev., Tome D61 (2000), pp. 104011 | Article | MR 1790762

[58] Halphen, G. H. Sur certains systéme d’équations différetielles, C. R. Acad. Sci Paris, Tome 92 (1881), pp. 1404-1407

[59] Halphen, G. H. Sur une systéme d’équations différetielles, C. R. Acad. Sci Paris, Tome 92 (1881), pp. 1101-1103

[60] Hamilton, Richard S. Three-manifolds with positive Ricci curvature, J. Differential Geom., Tome 17 (1982) no. 2, pp. 255-306 http://projecteuclid.org/getRecord?id=euclid.jdg/1214436922 | MR 664497 | Zbl 0504.53034

[61] Hitchin, N. J. Twistor spaces, Einstein metrics and isomonodromic deformations, J. Differential Geom., Tome 42 (1995) no. 1, pp. 30-112 http://projecteuclid.org/getRecord?id=euclid.jdg/1214457032 | MR 1350695 | Zbl 0861.53049

[62] ’T Hooft, G. Symmetry Breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett., Tome 37 (1976), pp. 8-11 http://link.aps.org/doi/10.1103/PhysRevLett.37.8 | Article

[63] Isenberg, James; Jackson, Martin Ricci flow of locally homogeneous geometries on closed manifolds, J. Differential Geom., Tome 35 (1992) no. 3, pp. 723-741 http://projecteuclid.org/getRecord?id=euclid.jdg/1214448265 | MR 1163457 | Zbl 0808.53044

[64] Ivanov, Evgeny; Valent, Galliano Harmonic space construction of the quaternionic Taub-NUT metric, Classical Quantum Gravity, Tome 16 (1999) no. 3, pp. 1039-1056 | Article | MR 1682553 | Zbl 0937.83032

[65] Jackson, John David Classical electrodynamics, John Wiley & Sons Inc., New York (1975) | MR 436782 | Zbl 0114.42903

[66] Jimbo, Michio; Miwa, Tetsuji Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D, Tome 2 (1981) no. 3, pp. 407-448 | Article | MR 625446 | Zbl 1194.34166

[67] Kasner, Edward Geometrical Theorems on Einstein’s Cosmological Equations, Amer. J. Math., Tome 43 (1921) no. 4, pp. 217-221 | Article | MR 1506447

[68] Koblitz, Neal Introduction to elliptic curves and modular forms, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 97 (1993) | MR 1216136 | Zbl 0804.11039

[69] Kramers, H. A.; Wannier, G. H. Statistics of the two-dimensional ferromagnet. I, Phys. Rev. (2), Tome 60 (1941), pp. 252-262 | Article | MR 4803 | Zbl 0027.28505

[70] Langlands, Robert P. On the functional equations satisfied by Eisenstein series, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 544 (1976) | MR 579181 | Zbl 0332.10018

[71] Lebrun, C. R. -space with a cosmological constant, Proc. Roy. Soc. London Ser. A, Tome 380 (1982) no. 1778, pp. 171-185 | Article | MR 652038 | Zbl 0549.53042

[72] Lorenz, D. Gravitational instanton solutions for Bianchi types I–IX, Acta Phys.Polon., Tome B14 (1983), pp. 791-805 | MR 741717

[73] Lorenz-Petzold, Dieter Gravitational instanton solutions, Progr. Theoret. Phys., Tome 81 (1989) no. 1, pp. 17-22 | Article | MR 989967

[74] Maciejewski, Andrzej J.; Strelcyn, Jean-Marie On the algebraic non-integrability of the Halphen system, Phys. Lett. A, Tome 201 (1995) no. 2-3, pp. 161-166 | Article | MR 1329966 | Zbl 1020.34502

[75] Manton, N. S. A remark on the scattering of BPS monopoles, Phys. Lett. B, Tome 110 (1982) no. 1, pp. 54-56 | Article | MR 647883 | Zbl 1190.81087

[76] Maszczyk, R.; Mason, L. J.; Woodhouse, N. M. J. Self-dual Bianchi metrics and the Painlevé transcendents, Classical Quantum Gravity, Tome 11 (1994) no. 1, pp. 65-71 http://stacks.iop.org/0264-9381/11/65 | Article | MR 1259124 | Zbl 0790.53032

[77] Milnor, John Curvatures of left invariant metrics on Lie groups, Advances in Math., Tome 21 (1976) no. 3, pp. 293-329 | Article | MR 425012 | Zbl 0341.53030

[78] Mœglin, C.; Waldspurger, J.-L. Spectral decomposition and Eisenstein series, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 113 (1995) (Une paraphrase de l’Écriture [A paraphrase of Scripture]) | Article | MR 1361168 | Zbl 0846.11032

[79] Montonen, C.; Olive, D. Magnetic monopoles as gauge particles?, Physics Letters B, Tome 72 (1977) no. 1, pp. 117 -120 http://www.sciencedirect.com/science/article/pii/0370269377900764 | Article

[80] Newman, E.; Tamburino, L.; Unti, T. Empty-space generalization of the Schwarzschild metric, J. Mathematical Phys., Tome 4 (1963), pp. 915-923 | Article | MR 152345 | Zbl 0115.43305

[81] Onsager, Lars Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition, Phys. Rev., Tome 65 (1944), pp. 117-149 http://link.aps.org/doi/10.1103/PhysRev.65.117 | Article | MR 10315 | Zbl 0060.46001

[82] Osborne, A.R.; Burch, T.L. Internal Solitons in the Andaman Sea, Science, Tome 208 (1980), pp. 451-460 | Article

[83] Pedersen, H. Eguchi-Hanson metrics with cosmological constant, Classical Quantum Gravity, Tome 2 (1985) no. 4, pp. 579-587 http://stacks.iop.org/0264-9381/2/579 | Article | MR 795103 | Zbl 0575.53006

[84] Pedersen, H. Einstein metrics, spinning top motions and monopoles, Math. Ann., Tome 274 (1986) no. 1, pp. 35-59 | Article | MR 834105 | Zbl 0566.53058

[85] Pedersen, Henrik; Poon, Yat Sun Hyper-Kähler metrics and a generalization of the Bogomolny equations, Comm. Math. Phys., Tome 117 (1988) no. 4, pp. 569-580 http://projecteuclid.org/getRecord?id=euclid.cmp/1104161817 | Article | MR 953820 | Zbl 0648.53028

[86] Pedersen, Henrik; Poon, Yat Sun Kähler surfaces with zero scalar curvature, Classical Quantum Gravity, Tome 7 (1990) no. 10, pp. 1707-1719 http://stacks.iop.org/0264-9381/7/1707 | Article | MR 1075860 | Zbl 0711.53039

[87] Perelman, Grisha The Entropy formula for the Ricci flow and its geometric applications (2002) (arXiv:math/0211159v1 [math.DG]) | Zbl 1130.53001

[88] Perelman, Grisha Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003) (arXiv:math/0307245v1 [math.DG]) | Zbl 1130.53003

[89] Perelman, Grisha Ricci flow with surgery on three-manifolds (2003) (arXiv:math/0303109v1 [math.DG]) | Zbl 1130.53002

[90] Petropoulos, P.M.; Pozzoli, V.; Siampos, K. Self-dual gravitational instantons and geometric flows of all Bianchi types (2011) (arXiv:1108.0003v2 [hep-th]) | MR 2865308 | Zbl 1232.83078

[91] Ryan, Michael P. Jr.; Shepley, Lawrence C. Homogeneous relativistic cosmologies, Princeton University Press, Princeton, N.J. (1975) (Princeton Series in Physics) | MR 524082

[92] Schlotterer, O.; Stieberger, S. Motivic Multiple Zeta Values and Superstring Amplitudes (2012) (arXiv:1205.1516v1 [hep-th])

[93] Scott, Peter The geometries of 3-manifolds, Bull. London Math. Soc., Tome 15 (1983) no. 5, pp. 401-487 | Article | MR 705527 | Zbl 0561.57001

[94] Seiberg, N.; Witten, E. Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory, Nuclear Physics B, Tome 426 (1994) no. 1, pp. 19 -52 http://www.sciencedirect.com/science/article/pii/0550321394901244 (Erratum [95]) | Article | MR 1293681 | Zbl 0996.81510

[95] Seiberg, N.; Witten, E. Erratum, Nuclear Physics B, Tome 430 (1994) no. 2, p. 485 -486 http://www.sciencedirect.com/science/article/pii/0550321394004498 | Article | MR 1303306 | Zbl 0996.81511

[96] Serre, Jean-Pierre Cours d’arithmétique, Presses Universitaires de France, Paris (1977) (Deuxième édition revue et corrigée, Le Mathématicien, No. 2) | MR 498338 | Zbl 0376.12001

[97] Sfetsos, K. T-duality and RG-flows (18-22 September 2006) (ERG2006, Lefkada, Greece, unpublished.)

[98] Spindel, Philippe Gravity before supergravity, Supersymmetry (Bonn, 1984), Plenum, New York (NATO Adv. Sci. Inst. Ser. B Phys.) Tome 125 (1985), pp. 455-533 | MR 820496

[99] Takhtajan, L. A. A simple example of modular forms as tau-functions for integrable equations, Teoret. Mat. Fiz., Tome 93 (1992) no. 2, pp. 330-341 | Article | MR 1233549 | Zbl 0794.35114

[100] Terras, Audrey Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York (1985) | MR 791406 | Zbl 0574.10029

[101] Thurston, W. The Geometry and Topology of Three-Manifolds (1978 – 1981) (Princeton lecture notes)

[102] Tod, K. P. A comment on: “Kähler surfaces with zero scalar curvature” [Classical Quantum Gravity 7 (1990), no. 10, 1707–1719; MR1075860 (91i:53057)] by H. Pedersen and Y. S. Poon, Classical Quantum Gravity, Tome 8 (1991) no. 5, pp. 1049-1051 http://stacks.iop.org/0264-9381/8/1049 | Article | MR 1104774 | Zbl 0726.53031

[103] Tod, K. P. Self-dual Einstein metrics from the Painlevé VI equation, Phys. Lett. A, Tome 190 (1994) no. 3-4, pp. 221-224 | Article | MR 1285788 | Zbl 0960.83505

[104] Ward, R. S. Self-dual space-times with cosmological constant, Comm. Math. Phys., Tome 78 (1980/81) no. 1, pp. 1-17 http://projecteuclid.org/getRecord?id=euclid.cmp/1103908499 | Article | MR 597028 | Zbl 0468.53019

[105] Ward, R. S. Integrable and solvable systems, and relations among them, Philos. Trans. Roy. Soc. London Ser. A, Tome 315 (1985) no. 1533, pp. 451-457 (With discussion, New developments in the theory and application of solitons) | Article | MR 836745 | Zbl 0579.35078