The linear symmetric systems associated with the modified Cherednik operators and applications
[Les systèmes symétriques linéaires associés aux opérateurs de Cherednik modifiés et applications]
Mejjaoli, Hatem
Annales mathématiques Blaise Pascal, Tome 19 (2012), p. 213-245 / Harvested from Numdam

Nous présentons et étudions les systèmes symétriques linéaires associés aux opérateurs de Cherednik modifiés. Nous prouvons que le problème de Cauchy pour ces systèmes sont bien posé. Finalement nous en décrivons le principe de vitesse finie.

We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/ambp.311
Classification:  35L05,  22E30
@article{AMBP_2012__19_1_213_0,
     author = {Mejjaoli, Hatem},
     title = {The linear symmetric systems associated with the modified Cherednik operators and applications},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     year = {2012},
     pages = {213-245},
     doi = {10.5802/ambp.311},
     zbl = {1248.35116},
     mrnumber = {2978320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2012__19_1_213_0}
}
Mejjaoli, Hatem. The linear symmetric systems associated with the modified Cherednik operators and applications. Annales mathématiques Blaise Pascal, Tome 19 (2012) pp. 213-245. doi : 10.5802/ambp.311. http://gdmltest.u-ga.fr/item/AMBP_2012__19_1_213_0/

[1] Ben Salem, N.; Ould Ahmed Salem, A. Convolution structure associated with the Jacobi-Dunkl operator on , Ramanujan J., Tome 12 (2006), pp. 359-378 | Article | MR 2293796

[2] Chazarain, J.; Piriou, A. Introduction to the theory of linear partial differential equations, North-Holland Publishing Company (1982) | MR 678605 | Zbl 0487.35002

[3] Cherednik, I. A unification of Knizhnik-Zamolodchnikove equations and Dunkl operators via affine Hecke algebras, Invent. Math., Tome 106 (1991), pp. 411-432 | Article | MR 1128220 | Zbl 0725.20012

[4] Chouchene, F.; Mili, M.; Trimèche, K. Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on , Anal. and Appl., Tome 1 (2003), pp. 387-412 | Article | MR 2009310

[5] Courant, R.; Friedrichs, K.; Lewy, H. Über die partiellen Differenzengleichungen der mathematischen Physik", Math. Ann., Tome 100 (1928), pp. 32-74 | Article | MR 1512478

[6] Friedrichs, K. Symmetric hyperbolic linear differential equations, Comm. Pure and Appl. Math., Tome 7 (1954), pp. 345-392 | Article | MR 62932 | Zbl 0059.08902

[7] Friedrichs, K. Symmetric positive linear hyperbolic differential equations, Comm. Pure and Appl. Math., Tome 11 (1958), pp. 333-418 | Article | MR 100718 | Zbl 0083.31802

[8] Friedrichs, K.; Lax, P. D. On symmetrizable differential operators, Proc. Symp. Pure Math., Tome 9 (1967), pp. 128-137 | Article | MR 239256 | Zbl 0184.36603

[9] Lax, P. D. On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure and Appl. Math., Tome 8 (1955), pp. 615-633 | Article | MR 78558 | Zbl 0067.07502

[10] Lax, P. D.; Phillips, R. S. Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure and Appl. Math., Tome 13 (1960), pp. 427-455 | Article | MR 118949 | Zbl 0094.07502

[11] Lebeau, G. Majeure d’équations aux dérivées partielles, Prépublication de l’école polytechniques, Tome 28 (1990), pp. 43-62

[12] Opdam, Eric M. Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., Tome 175 (1995), pp. 75-121 | Article | MR 1353018 | Zbl 0836.43017

[13] Opdam, Eric M. Lecture notes on Dunkl operators for real and complex reflection groups, Mathematical Society of Japan, Tokyo, MSJ Memoirs, Tome 8 (2000) (With a preface by Toshio Oshima) | MR 1805058

[14] Rauch, J. L 2 is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure. and Appl. Math., Tome 15 (1972), pp. 265-285 | Article | MR 298232 | Zbl 0226.35056

[15] Schapira, B. Contributions to the hypergeometric function theory of Heckman and Opdam: sharpe stimates, Schwartz spaces, heat kernel, Geom. Funct. Anal., Tome 18 (2008), pp. 222-250 | Article | MR 2399102

[16] Shirota, T. On the propagation speed of a hyperbolic operator with mixed boundary conditions, J. Fac. Sci. Hokkaido Univ., Tome 22 (1972), pp. 25-31 | MR 304871 | Zbl 0234.35060

[17] Triebel, H. Interpolation theory, functions spaces differential operators, North Holland, Amesterdam (1978) | Zbl 0387.46032

[18] Weber, H. Die partiellen Differentialgleichungen der mathematischen Physik nach Riemann’s Vorlesungen in 4-ter Auflage neu bearbeitet, Braunschweig, Friederich Vieweg, Tome 1 (1900), pp. 1-390

[19] Zaremba, S. Sopra un theorema d’unicità relativo alla equazione delle onde sferiche, Rend. Accad. Naz. Lincei, Tome 24 (1915), pp. 904-908