The second Yamabe invariant with singularities
Benalili, Mohammed ; Boughazi, Hichem
Annales mathématiques Blaise Pascal, Tome 19 (2012), p. 147-176 / Harvested from Numdam

Let (M,g) be a compact Riemannian manifold of dimension n3.We suppose that g is a metric in the Sobolev space H 2 p (M,T * MT * M) with p>n 2 and there exist a point PM and δ>0 such that g is smooth in the ball B p (δ). We define the second Yamabe invariant with singularities as the infimum of the second eigenvalue of the singular Yamabe operator over a generalized class of conformal metrics to g and of volume 1. We show that this operator is attained by a generalized metric, we deduce nodal solutions to a Yamabe type equation with singularities.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/ambp.308
Classification:  58J05
@article{AMBP_2012__19_1_147_0,
     author = {Benalili, Mohammed and Boughazi, Hichem},
     title = {The second Yamabe invariant with singularities},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     year = {2012},
     pages = {147-176},
     doi = {10.5802/ambp.308},
     zbl = {1256.58005},
     mrnumber = {2978317},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2012__19_1_147_0}
}
Benalili, Mohammed; Boughazi, Hichem. The second Yamabe invariant with singularities. Annales mathématiques Blaise Pascal, Tome 19 (2012) pp. 147-176. doi : 10.5802/ambp.308. http://gdmltest.u-ga.fr/item/AMBP_2012__19_1_147_0/

[1] Ammann, B.; Humbert, E. The second Yamabe invariant, J. Funct. Anal., Tome 235 (2006) no. 2, pp. 377-412 | Article | MR 2225458

[2] Aubin, Thierry Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. (9), Tome 55 (1976) no. 3, pp. 269-296 | MR 431287 | Zbl 0336.53033

[3] Benalili, Mohammed; Boughazi, Hichem On the second Paneitz-Branson invariant, Houston J. Math., Tome 36 (2010) no. 2, pp. 393-420 | MR 2661253

[4] Brézis, Haïm; Lieb, Elliott A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., Tome 88 (1983) no. 3, pp. 486-490 | Article | MR 699419 | Zbl 0526.46037

[5] Hebey, Emmanuel Introductions à l’analyse sur les variétés, Diderot Éditeur, Arts et sciences, Paris, Courant Lecture Notes in Mathematics, Tome 5 (1997)

[6] Madani, Farid Le problème de Yamabe avec singularités, Bull. Sci. Math., Tome 132 (2008) no. 7, pp. 575-591 | Article | MR 2455898

[7] Schoen, R.; Yau, S.-T. Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math., Tome 92 (1988) no. 1, pp. 47-71 | Article | MR 931204 | Zbl 0658.53038

[8] Schoen, Richard Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom., Tome 20 (1984) no. 2, pp. 479-495 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439291 | MR 788292 | Zbl 0576.53028

[9] Trudinger, Neil S. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa (3), Tome 22 (1968), pp. 265-274 | Numdam | MR 240748 | Zbl 0159.23801