Local coordinates for SL(n,C)-character varieties of finite-volume hyperbolic 3-manifolds
[Coordonnées locales pour la variété des SL(n,C)-caractères des 3-variétés hyperboliques à volume fini]
Menal-Ferrer, Pere ; Porti, Joan
Annales mathématiques Blaise Pascal, Tome 19 (2012), p. 107-122 / Harvested from Numdam

Étant donnée une 3-variété hyperbolique à volume fini, on compose un relevé dans SL(2,C) de son holnomie avec la représentation irreductible et n-dimensionnelle de SL(2,C) dans SL(n,C). Dans cet article on donne des coordonnées locales autour du caractère de cette représentation. Comme corollaire, cette representation est isolée parmi toutes les représentations qui sont unipotentes aux bouts.

Given a finite-volume hyperbolic 3-manifold, we compose a lift of the holonomy in SL(2,C) with the n-dimensional irreducible representation of SL(2,C) in SL(n,C). In this paper we give local coordinates of the SL(n,C)-character variety around the character of this representation. As a corollary, this representation is isolated among all representations that are unipotent at the cusps.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/ambp.306
Classification:  53C24,  57M50,  20C15
Mots clés: rigidité infinitesimale, variété des caractères, 3-variété hyperbolique, cohomolgie L2
@article{AMBP_2012__19_1_107_0,
     author = {Menal-Ferrer, Pere and Porti, Joan},
     title = {Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     year = {2012},
     pages = {107-122},
     doi = {10.5802/ambp.306},
     zbl = {1252.53053},
     mrnumber = {2978315},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2012__19_1_107_0}
}
Menal-Ferrer, Pere; Porti, Joan. Local coordinates for $\operatorname{SL}(n,\mathbf{C})$-character varieties of finite-volume hyperbolic 3-manifolds. Annales mathématiques Blaise Pascal, Tome 19 (2012) pp. 107-122. doi : 10.5802/ambp.306. http://gdmltest.u-ga.fr/item/AMBP_2012__19_1_107_0/

[1] Anderson, Michael T. Topics in conformally compact Einstein metrics, Perspectives in Riemannian geometry, Amer. Math. Soc., Providence, RI (CRM Proc. Lecture Notes) Tome 40 (2006), pp. 1-26 | MR 2237104

[2] Bromberg, K. Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata, Tome 105 (2004), pp. 143-170 | Article | MR 2057249

[3] Kapovich, Michael Hyperbolic manifolds and discrete groups, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 183 (2001) | MR 1792613

[4] Lubotzky, Alexander; Magid, Andy R. Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., Tome 58 (1985) no. 336, pp. xi+117 | MR 818915 | Zbl 0598.14042

[5] Matsushima, Yozô; Murakami, Shingo On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2), Tome 78 (1963), pp. 365-416 | Article | MR 153028 | Zbl 0125.10702

[6] Menal-Ferrer, Pere; Porti, Joan Twisted cohomology for hyperbolic three manifolds, to appear in Osaka J. Math. (2012), arXiv:1001.2242

[7] Raghunathan, M. S. On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math., Tome 87 (1965), pp. 103-139 | Article | MR 173730 | Zbl 0132.02102

[8] Weil, André Remarks on the cohomology of groups, Ann. of Math. (2), Tome 80 (1964), pp. 149-157 | Article | MR 169956 | Zbl 0192.12802

[9] Weiss, Hartmut Local rigidity of 3-dimensional cone-manifolds, J. Differential Geom., Tome 71 (2005) no. 3, pp. 437-506 | MR 2198808