Nous généralisons la catégorification des groupes de tresses par complexes de bimodules de Soergel due à Rouquier aux groupes de tresses virtuelles.
We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.
@article{AMBP_2011__18_2_231_0, author = {Thiel, Anne-Laure}, title = {Categorification of the virtual braid groups}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {18}, year = {2011}, pages = {231-243}, doi = {10.5802/ambp.297}, zbl = {1260.20059}, mrnumber = {2896487}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2011__18_2_231_0} }
Thiel, Anne-Laure. Categorification of the virtual braid groups. Annales mathématiques Blaise Pascal, Tome 18 (2011) pp. 231-243. doi : 10.5802/ambp.297. http://gdmltest.u-ga.fr/item/AMBP_2011__18_2_231_0/
[1] The braid-permutation group, Topology, Tome 36 (1997) no. 1, pp. 123-135 | Article | MR 1410467 | Zbl 0861.57010
[2] Abstract link diagrams and virtual knots, J. Knot Theory Ramifications, Tome 9 (2000) no. 1, pp. 93-106 | Article | MR 1749502 | Zbl 0997.57018
[3] Braid presentation of virtual knots and welded knots, Osaka J. Math., Tome 44 (2007) no. 2, pp. 441-458 http://projecteuclid.org/getRecord?id=euclid.ojm/1183667989 | MR 2351010 | Zbl 1147.57008
[4] Braid groups, Springer, New York, Graduate Texts in Mathematics, Tome 247 (2008) | MR 2435235 | Zbl 1208.20041
[5] Virtual knot theory, European J. Combin., Tome 20 (1999) no. 7, pp. 663-690 | Article | MR 1721925 | Zbl 0938.57006
[6] Triply-graded link homology and Hochschild homology of Soergel bimodules, Internat. J. Math., Tome 18 (2007) no. 8, pp. 869-885 | Article | MR 2339573 | Zbl 1124.57003
[7] What is a virtual link?, Algebr. Geom. Topol., Tome 3 (2003), p. 587-591 (electronic) | Article | MR 1997331 | Zbl 1031.57010
[8] Knot theory, Chapman & Hall/CRC, Boca Raton, FL (2004) | MR 2068425 | Zbl 1052.57001
[9] On functors associated to a simple root, J. Algebra, Tome 314 (2007) no. 1, pp. 97-128 | Article | MR 2331754 | Zbl 1152.17002
[10] Categorification of and braid groups, Trends in representation theory of algebras and related topics, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 406 (2006), pp. 137-167 | MR 2258045 | Zbl 1162.20301
[11] The combinatorics of Harish-Chandra bimodules, J. Reine Angew. Math., Tome 429 (1992), pp. 49-74 | Article | MR 1173115 | Zbl 0745.22014
[12] Gradings on representation categories, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), pp. 800-806 | MR 1403980 | Zbl 0854.17006
[13] On homology of virtual braids and Burau representation, J. Knot Theory Ramifications, Tome 10 (2001) no. 5, pp. 795-812 (Knots in Hellas ’98, Vol. 3 (Delphi)) | Article | MR 1839703 | Zbl 0997.57020