In this paper, following the -adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not -compacts, we study the class of integrable -adic functions with respect to Bernoulli measures of rank . Among these measures, we characterize those which are invertible and we give their inverse in the form of series.
@article{AMBP_2010__17_2_341_0, author = {Ma\"\i ga, Hamadoun}, title = {Integrable functions for the Bernoulli measures of rank $1$}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {17}, year = {2010}, pages = {341-356}, doi = {10.5802/ambp.287}, zbl = {1207.26031}, mrnumber = {2778916}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2010__17_2_341_0} }
Maïga, Hamadoun. Integrable functions for the Bernoulli measures of rank $1$. Annales mathématiques Blaise Pascal, Tome 17 (2010) pp. 341-356. doi : 10.5802/ambp.287. http://gdmltest.u-ga.fr/item/AMBP_2010__17_2_341_0/
[1] Base de Mahler et autres, Séminaire d’Analyse, 1994–1995 (Aubière), Univ. Blaise Pascal (Clermont II), Clermont-Ferrand (Sémin. Anal. Univ. Blaise Pascal (Clermont II)) Tome 10 (1997), pp. Exp. No. 16, 18 | MR 1461327 | Zbl 0999.12014
[2] Cours d’analyse -adique, Université de Bamako, Faculté des Sciences et Techniques (1999 - 2000) (Technical report)
[3] -adic Numbers, -adic Analysis and Zeta-Functions, Springer-Verlag, New York - Heidelberg - Berlin (1977) | MR 466081 | Zbl 0364.12015
[4] Intégration non-archimédienne. I, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Tome 25 (1963), pp. 634-642 | MR 156936 | Zbl 0147.11803
[5] Intégration non-archimédienne. II, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Tome 25 (1963), pp. 643-653 | MR 156937 | Zbl 0147.11803
[6] Non-Archimedean Functional Analysis, M. Dekker, New York and Basel (1978) | MR 512894 | Zbl 0396.46061
[7] Ultrametric calculus - An introduction to p-adic analysis, Cambridge University Press, Cambridge (1984) | MR 791759 | Zbl 0553.26006