Integrable functions for the Bernoulli measures of rank 1
Maïga, Hamadoun
Annales mathématiques Blaise Pascal, Tome 17 (2010), p. 341-356 / Harvested from Numdam

In this paper, following the p-adic integration theory worked out by A. F. Monna and T. A. Springer [4, 5] and generalized by A. C. M. van Rooij and W. H. Schikhof [6, 7] for the spaces which are not σ-compacts, we study the class of integrable p-adic functions with respect to Bernoulli measures of rank 1. Among these measures, we characterize those which are invertible and we give their inverse in the form of series.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/ambp.287
Classification:  46S10
@article{AMBP_2010__17_2_341_0,
     author = {Ma\"\i ga, Hamadoun},
     title = {Integrable functions for the Bernoulli measures of rank $1$},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     year = {2010},
     pages = {341-356},
     doi = {10.5802/ambp.287},
     zbl = {1207.26031},
     mrnumber = {2778916},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2010__17_2_341_0}
}
Maïga, Hamadoun. Integrable functions for the Bernoulli measures of rank $1$. Annales mathématiques Blaise Pascal, Tome 17 (2010) pp. 341-356. doi : 10.5802/ambp.287. http://gdmltest.u-ga.fr/item/AMBP_2010__17_2_341_0/

[1] Diarra, Bertin Base de Mahler et autres, Séminaire d’Analyse, 1994–1995 (Aubière), Univ. Blaise Pascal (Clermont II), Clermont-Ferrand (Sémin. Anal. Univ. Blaise Pascal (Clermont II)) Tome 10 (1997), pp. Exp. No. 16, 18 | MR 1461327 | Zbl 0999.12014

[2] Diarra, Bertin Cours d’analyse p-adique, Université de Bamako, Faculté des Sciences et Techniques (1999 - 2000) (Technical report)

[3] Koblitz, Neal p-adic Numbers, p-adic Analysis and Zeta-Functions, Springer-Verlag, New York - Heidelberg - Berlin (1977) | MR 466081 | Zbl 0364.12015

[4] Monna, A. F.; Springer, T. A. Intégration non-archimédienne. I, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Tome 25 (1963), pp. 634-642 | MR 156936 | Zbl 0147.11803

[5] Monna, A. F.; Springer, T. A. Intégration non-archimédienne. II, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math., Tome 25 (1963), pp. 643-653 | MR 156937 | Zbl 0147.11803

[6] Van Rooij, Arnoud C. M. Non-Archimedean Functional Analysis, M. Dekker, New York and Basel (1978) | MR 512894 | Zbl 0396.46061

[7] Schikhof, Wilhelmus H. Ultrametric calculus - An introduction to p-adic analysis, Cambridge University Press, Cambridge (1984) | MR 791759 | Zbl 0553.26006