Cônes nilpotents des super algèbres de Lie orthosymplectiques
Gruson, Caroline ; Leidwanger, Séverine
Annales mathématiques Blaise Pascal, Tome 17 (2010), p. 303-326 / Harvested from Numdam

Nous étudions le cône nilpotent impair des super algèbres de Lie orthosymplectiques. Nous nous intéressons aux orbites nilpotentes impaires qui le constituent, à la relation d’ordre sur leurs adhérences et donnons une désingularisation de ce cône .

We study the odd nilpotent cone of orthosymplectic Lie superalgebras, we look at nilpotent orbits and their closure ordering and we give a desingularisation of the cone.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/ambp.285
Classification:  17BXX,  14LXX
Mots clés: Super algèbres de Lie, Orbites nilpotentes, Groupes algébriques, Désingularisation des cônes nilpotents
@article{AMBP_2010__17_2_303_0,
     author = {Gruson, Caroline and Leidwanger, S\'everine},
     title = {C\^ones nilpotents des super alg\`ebres de Lie orthosymplectiques},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     year = {2010},
     pages = {303-326},
     doi = {10.5802/ambp.285},
     zbl = {1206.17016},
     mrnumber = {2778918},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AMBP_2010__17_2_303_0}
}
Gruson, Caroline; Leidwanger, Séverine. Cônes nilpotents des super algèbres de Lie orthosymplectiques. Annales mathématiques Blaise Pascal, Tome 17 (2010) pp. 303-326. doi : 10.5802/ambp.285. http://gdmltest.u-ga.fr/item/AMBP_2010__17_2_303_0/

[1] Collingwood, D. H.; Mcgovern, W. M. Nilpotent orbits in semisimple Lie Algebras, Van Nostrand Reinhold (1993) | MR 1251060 | Zbl 0972.17008

[2] Djoković, D. Z.; Litvinov, M. The closure ordering of nilpotent orbits of the complex symmetric pair SO p+q ,SO p ×SO q , Canad. J. Math., Tome 55 (2003), pp. 1155-1190 | Article | Zbl 1060.17002

[3] Gruson, C. Finitude de l’homologie de certains modules de dimension finie sur une super algèbre de Lie, Ann. Inst. Fourier, Tome 47 (1997), pp. 531-553 | Article | Numdam | MR 1450424 | Zbl 0974.17024

[4] Gruson, C. Sur l’idéal autocommutant des super algèbres de Lie basiques classiques et étranges, Ann. Inst. Fourier, Tome 50 (2000), pp. 807-831 | Article | Numdam | MR 1779895 | Zbl 1063.17011

[5] Kac, V. Representations of classical Lie superalgebras, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Springer, Berlin (Lecture Notes in Math.) Tome 676 (1978), pp. 597-626 | MR 519631 | Zbl 0388.17002

[6] Kac, V.G. Some remarks on nilpotent orbits, J. of Algebra, Tome 64 (1980), pp. 190-213 | Article | MR 575790 | Zbl 0431.17007

[7] Kraft, H.; Procesi, C. On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. (1982), pp. 539-602 | Article | MR 694606 | Zbl 0511.14023

[8] Van De Leur, J. Contragredient Lie superalgebras of finite growth (1986) (Ph.D. thesis, Utrecht University)

[9] Ohta, T. The closures of nilpotent orbits in the classical symmetric pairs and their singularities, Tohoku Math. J., Tome 43 (1991), pp. 161-211 | Article | MR 1104427 | Zbl 0738.22007

[10] Springer, T. A construction of representations of Weyl groups, Invent. Math., Tome 44 (1978), pp. 279-293 | Article | MR 491988 | Zbl 0376.17002

[11] Springer, T. A. Quelques applications de la cohomologie d’intersection, Bourbaki Seminar, Vol. 1981/1982, Soc. Math. France, Paris (Astérisque) Tome 92 (1982), pp. 249-273 | Numdam | MR 689533 | Zbl 0526.22014

[12] Vust, T. Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, Tome 26 (1976), pp. 1-31 | Article | Numdam | MR 404280 | Zbl 0314.20035