Frank Lesieur a introduit une notion de groupoïde quantique mesuré, dans le cadre des algèbres de von Neumann, en s’inspirant des groupes quantiques localement compacts de Kustermans et Vaes (dans la version de cette construction faite dans le cadre des algèbres de von Neumann). Dans un article précédent, l’auteur a introduit les notions d’action, de produit croisé, d’action duale d’un groupoïde quantique mesuré ; un théorème de bidulaité des actions a éte démontré. Cet article continue ce programme : nous démontrons l’existence d’une implémentation standard d’une action, et un théorème de bidulaité pour les poids. Sont ainsi généralisés des résultats qui avaient été démontrés par S. Vaes pour les groupes quantiques localement compacts, et par T. Yamanouchi pour les groupoïdes mesurés.
Mimicking the von Neumann version of Kustermans and Vaes’ locally compact quantum groups, Franck Lesieur had introduced a notion of measured quantum groupoid, in the setting of von Neumann algebras. In a former article, the author had introduced the notions of actions, crossed-product, dual actions of a measured quantum groupoid; a biduality theorem for actions has been proved. This article continues that program: we prove the existence of a standard implementation for an action, and a biduality theorem for weights. We generalize this way results which were proved, for locally compact quantum groups by S. Vaes, and for measured groupoids by T. Yamanouchi.
@article{AMBP_2010__17_2_233_0, author = {Enock, Michel}, title = {The unitary implementation of a measured quantum groupoid action}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {17}, year = {2010}, pages = {233-302}, doi = {10.5802/ambp.284}, zbl = {pre05839423}, mrnumber = {2778919}, zbl = {1235.46066}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2010__17_2_233_0} }
Enock, Michel. The unitary implementation of a measured quantum groupoid action. Annales mathématiques Blaise Pascal, Tome 17 (2010) pp. 233-302. doi : 10.5802/ambp.284. http://gdmltest.u-ga.fr/item/AMBP_2010__17_2_233_0/
[1] Unitaires multiplicatifs et dualité pour les produits croisés de -algèbres, Ann. Sci. École Norm. Sup. (4), Tome 26 (1993) no. 4, pp. 425-488 | Numdam | MR 1235438 | Zbl 0804.46078
[2] Non-semi-regular quantum groups coming from number theory, Comm. Math. Phys., Tome 235 (2003) no. 1, pp. 139-167 | Article | MR 1969723 | Zbl 1029.46113
[3] Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu, Tome 4 (2005) no. 1, pp. 135-173 | Article | MR 2115071 | Zbl 1071.46040
[4] Tensor products of -algebras over , Astérisque (1995) no. 232, pp. 81-92 (Recent advances in operator algebras (Orléans, 1992)) | MR 1372526 | Zbl 0842.46049
[5] Déformations de -algèbres de Hopf, Bull. Soc. Math. France, Tome 124 (1996) no. 1, pp. 141-215 | Numdam | MR 1395009 | Zbl 0851.46040
[6] Weak -Hopf algebras: the coassociative symmetry of non-integral dimensions, Quantum groups and quantum spaces (Warsaw, 1995), Polish Acad. Sci., Warsaw (Banach Center Publ.) Tome 40 (1997), pp. 9-19 | MR 1481730 | Zbl 0894.16018
[7] A coassociative -quantum group with nonintegral dimensions, Lett. Math. Phys., Tome 38 (1996) no. 4, pp. 437-456 | Article | MR 1421688 | Zbl 0872.16022
[8] On the spatial theory of von Neumann algebras, J. Funct. Anal., Tome 35 (1980) no. 2, pp. 153-164 | Article | MR 561983 | Zbl 0443.46042
[9] Noncommutative geometry, Academic Press Inc., San Diego, CA (1994) | MR 1303779 | Zbl 0818.46076
[10] -groupoïdes quantiques et inclusions de facteurs: structure symétrique et autodualité, action sur le facteur hyperfini de type , J. Operator Theory, Tome 54 (2005) no. 1, pp. 27-68 | MR 2168858 | Zbl 1120.46048
[11] Monoidal equivalence for locally compact quantum groups (2008) (mathOA/0804.2405, to appear in J. Operator Theory)
[12] Produit croisé d’une algèbre de von Neumann par une algèbre de Kac, J. Functional Analysis, Tome 26 (1977) no. 1, pp. 16-47 | Article | MR 473854 | Zbl 0366.46053
[13] Inclusions irréductibles de facteurs et unitaires multiplicatifs. II, J. Funct. Anal., Tome 154 (1998) no. 1, pp. 67-109 | Article | MR 1616500 | Zbl 0921.46065
[14] Inclusions of von Neumann algebras and quantum groupoïds. III, J. Funct. Anal., Tome 223 (2005) no. 2, pp. 311-364 | Article | MR 2142344 | Zbl 1088.46036
[15] Quantum groupoids of compact type, J. Inst. Math. Jussieu, Tome 4 (2005) no. 1, pp. 29-133 | Article | MR 2115070 | Zbl 1071.46041
[16] Measured quantum groupoids in action, Mém. Soc. Math. Fr. (N.S.) (2008) no. 114, pp. ii+150 pp. (2009) | Numdam | MR 2541012 | Zbl 1189.58002
[17] Measured Quantum Groupoids with a central basis (2008) (mathOA/0808.4052, to be published in J. Operator Theory)
[18] Outer actions of measured quantum groupoids (2009) (mathOA/0909.1206)
[19] Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras, J. Funct. Anal., Tome 137 (1996) no. 2, pp. 466-543 | Article | MR 1387518 | Zbl 0847.22003
[20] Produit croisé d’une algèbre de von Neumann par une algèbre de Kac. II, Publ. Res. Inst. Math. Sci., Tome 16 (1980) no. 1, pp. 189-232 | Article | MR 574033 | Zbl 0441.46056
[21] Kac algebras and duality of locally compact groups, Springer-Verlag, Berlin (1992) (With a preface by Alain Connes, With a postface by Adrian Ocneanu) | MR 1215933 | Zbl 0805.22003
[22] Inclusions of von Neumann algebras, and quantum groupoids, J. Funct. Anal., Tome 172 (2000) no. 2, pp. 249-300 | Article | MR 1753177 | Zbl 0974.46055
[23] Index for subfactors, Invent. Math., Tome 72 (1983) no. 1, pp. 1-25 | Article | MR 696688 | Zbl 0508.46040
[24] Locally compact quantum groups, Ann. Sci. École Norm. Sup. (4), Tome 33 (2000) no. 6, pp. 837-934 | Article | Numdam | MR 1832993 | Zbl 1034.46508
[25] Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand., Tome 92 (2003) no. 1, pp. 68-92 | Numdam | MR 1951446 | Zbl 1034.46067
[26] Measured quantum groupoids, Mém. Soc. Math. Fr. (N.S.) (2007) no. 109, pp. iv+158 pp. (2008) | Numdam | MR 2474165 | Zbl pre05382984
[27] A -algebraic framework for quantum groups, Internat. J. Math., Tome 14 (2003) no. 9, pp. 903-1001 | Article | MR 2020804 | Zbl 1053.46050
[28] A von Neumann algebra framework for the duality of the quantum groups, Publ. Res. Inst. Math. Sci., Tome 30 (1994) no. 5, pp. 799-850 | Article | MR 1311393 | Zbl 0839.46055
[29] Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998), Dekker, New York (Lecture Notes in Pure and Appl. Math.) Tome 209 (2000), pp. 189-220 | MR 1763613 | Zbl 1032.46537
[30] A characterization of depth 2 subfactors of factors, J. Funct. Anal., Tome 171 (2000) no. 2, pp. 278-307 | Article | MR 1745634 | Zbl 1010.46063
[31] Finite quantum groupoids and their applications, New directions in Hopf algebras, Cambridge Univ. Press, Cambridge (Math. Sci. Res. Inst. Publ.) Tome 43 (2002), pp. 211-262 | MR 1913440 | Zbl 1026.17017
[32] Sur le produit tensoriel relatif d’espaces de Hilbert, J. Operator Theory, Tome 9 (1983) no. 2, pp. 237-252 | MR 703809 | Zbl 0517.46050
[33] Modular theory in operator algebras, Editura Academiei Republicii Socialiste România, Bucharest (1981) (Translated from the Romanian by the author) | MR 696172 | Zbl 0504.46043
[34] Weak Hopf algebras, Operator algebras and quantum field theory (Rome, 1996), Int. Press, Cambridge, MA (1997), pp. 621-632 | MR 1491146 | Zbl 1098.16504
[35] Theory of operator algebras. II, Springer-Verlag, Berlin, Encyclopaedia of Mathematical Sciences, Tome 125 (2003) (Operator Algebras and Non-commutative Geometry, 6) | MR 1943006 | Zbl 1059.46031
[36] The unitary implementation of a locally compact quantum group action, J. Funct. Anal., Tome 180 (2001) no. 2, pp. 426-480 | Article | MR 1814995 | Zbl 1011.46058
[37] Strictly outer actions of groups and quantum groups, J. Reine Angew. Math., Tome 578 (2005), pp. 147-184 | Article | MR 2113893 | Zbl 1073.46047
[38] Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., Tome 175 (2003) no. 1, pp. 1-101 | Article | MR 1970242 | Zbl 1034.46068
[39] Bimodules de Hopf et poids opératoriels de Haar, J. Operator Theory, Tome 35 (1996) no. 1, pp. 39-65 | MR 1389642 | Zbl 0849.22002
[40] Unitaire pseudo-multiplicatif associé à un groupoïde. Applications à la moyennabilité, J. Operator Theory, Tome 44 (2000) no. 2, pp. 347-368 | MR 1794823 | Zbl 0986.22002
[41] Groupoïdes quantiques finis, J. Algebra, Tome 239 (2001) no. 1, pp. 215-261 | Article | MR 1827882 | Zbl 1003.46040
[42] Multiplicative partial isometries and finite quantum groupoids, Locally compact quantum groups and groupoids (Strasbourg, 2002), de Gruyter, Berlin (IRMA Lect. Math. Theor. Phys.) Tome 2 (2003), pp. 189-227 | MR 1976946 | Zbl 1171.47306
[43] Measured quantum groupoids associated with matched pairs of locally compact groupoids (2009) (mathOA/0906.5247)
[44] Tannaka-Kreĭn duality for compact matrix pseudogroups. Twisted groups, Invent. Math., Tome 93 (1988) no. 1, pp. 35-76 | Article | MR 943923 | Zbl 0664.58044
[45] From multiplicative unitaries to quantum groups, Internat. J. Math., Tome 7 (1996) no. 1, pp. 127-149 | Article | MR 1369908 | Zbl 0876.46044
[46] Compact quantum groups, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam (1998), pp. 845-884 | MR 1616348 | Zbl 0997.46045
[47] Crossed products by groupoid actions and their smooth flows of weights, Publ. Res. Inst. Math. Sci., Tome 28 (1992) no. 4, pp. 535-578 | Article | MR 1191875 | Zbl 0824.46080
[48] Dual weights on crossed products by groupoid actions, Publ. Res. Inst. Math. Sci., Tome 28 (1992) no. 4, pp. 653-678 | Article | MR 1191881 | Zbl 0824.46081
[49] Duality for actions and coactions of measured groupoids on von Neumann algebras, Mem. Amer. Math. Soc., Tome 101 (1993) no. 484, pp. vi+109 | MR 1127115 | Zbl 0822.46070
[50] Canonical extension of actions of locally compact quantum groups, J. Funct. Anal., Tome 201 (2003) no. 2, pp. 522-560 | Article | MR 1986698 | Zbl 1034.46070
[51] Takesaki duality for weights on locally compact quantum group covariant systems, J. Operator Theory, Tome 50 (2003) no. 1, pp. 53-66 | MR 2015018 | Zbl 1036.46056