On étudie dans cet article les notions d’algèbre à homotopie près pour une structure définie par deux opérations et . Ayant déterminé la structure des algèbres et des algèbres, on généralise cette construction et on définit la stucture des -algèbres à homotopie près. Etant donnée une structure d’algèbre commutative et de Lie différentielle graduée pour deux décalages des degrés donnés par et , on donnera une construction explicite de l’algèbre à homotopie près associée et on précisera la relation entre les -algèbres et les algèbres sur l’homologie de l’opérade des petits cubes en toute dimension.
We study in this article the concepts of algebra up to homotopy for a structure defined by two operations and . Having determined the structure of algebras and algebras, we generalize this construction and we define a structure of -algebra up to homotopy. Given a structure of commutative and differential graded Lie algebra for two shifts degree given by and , we will give an explicit construction of the associate algebra up to homotopy and we clarify the relationship between -algebra and algebra over the operad of little -dimensional cubes.
@article{AMBP_2010__17_1_97_0, author = {Aloulou, Walid}, title = {Les $(a,b)$-alg\`ebres \`a homotopie pr\`es}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {17}, year = {2010}, pages = {97-151}, doi = {10.5802/ambp.279}, zbl = {1204.18007}, mrnumber = {2674655}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2010__17_1_97_0} }
Aloulou, Walid. Les $(a,b)$-algèbres à homotopie près. Annales mathématiques Blaise Pascal, Tome 17 (2010) pp. 97-151. doi : 10.5802/ambp.279. http://gdmltest.u-ga.fr/item/AMBP_2010__17_1_97_0/
[1] Cohomologie de Chevalley des graphes vectoriels, Pacific J of Math, Tome 229 (2007) no. 2, pp. 257-292 | Article | MR 2276511 | Zbl pre05366194
[2] Algèbres et cogèbres de Gerstenhaber et cohomologies de Chevalley-Harrison, Bulletin des Sciences Mathématiques, Tome 133 (2009) no. 1, pp. 1-50 | Article | MR 2483521 | Zbl 1159.18006
[3] Choix des signes pour la formalité de M. Kontsevich, Pacific J of Math, Tome 203 (2002) no. 1, pp. 23-66 | Article | MR 1895924 | Zbl 1055.53066
[4] The -graded Schouten-Nijenhuis bracket and generalized super-Poisson structures (1997) (preprint arXiv :hep-th/9612186v2) | Zbl 0883.58007
[5] Cohomology of acting on linear differential operators on the supercircle (2007) (Preprint arXiv :0709.1768v1 [math.RT] 12) | Zbl 1138.53066
[6] Homotopy invariant algebraic structures on topological spaces, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 347 (1973) | MR 420609 | Zbl 0285.55012
[7] Formalité adaptée et star-représentations sur des sous variétés coïsotropes (2005) (Preprint arXiv :math.QA/0504276 v 1)
[8] Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math., Tome 208 (2007) no. 2, pp. 521-548 | Article | MR 2304327 | Zbl 1106.53060
[9] Homology of and , , Bull. Amer. Math. Soc., Tome 79 (1973) no. 6, pp. 1236-1241 | Article | MR 339176 | Zbl 0281.55004
[10] Notes on string topology, string topology and cyclic homology, Adv. courses Math. CRM Barcelona, Birkhäuser, Basel (2006), pp. 1-95 | MR 2240287
[11] Théorie des opérades de Koszul et homologie des algèbres de Poisson, Annales mathématiques Blaise Pascal, Tome 13 (2006) no. 2, pp. 237-312 | Article | Numdam | MR 2275449 | Zbl 1141.55006
[12] Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys, Tome 159 (1994) no. 2, pp. 265-285 | Article | MR 1256989 | Zbl 0807.17026
[13] Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (Preprint arXiv :hep-th/9403055)
[14] Homologie et modèle minimal des algèbres de Gerstenhaber, Annales mathématiques Blaise Pascal, Tome 11 (2004) no. 1, pp. 95-126 | Article | Numdam | MR 2077240 | Zbl 1139.16301
[15] A formality theorem for Poisson manifolds, Lett. Math. Phys., Tome 66 (2003), pp. 37-64 | Article | MR 2064591 | Zbl 1066.53145
[16] Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, vol I (Dijon), Math. Phys. Stud., 21, Kluwer Acad. Publ., Dordrecht (2000), pp. 255-307 | MR 1805894 | Zbl 0972.18005
[17] Odd and even Poisson brackets in dynamical systems, Lett. Math. Phys., Tome 9 (1985), pp. 323-330 | Article | MR 796633 | Zbl 0585.58020
[18] New superalgebras and mechanics, Sov. Math. Dokl., Tome 18 (1977), pp. 1277-1280 | Zbl 0403.17002
[19] Cyclic Homology, Second Edition Grundlerhren der Mathematischen Wissenschaften A series of comprehensive studies in mathematics Springer-Verlag Tome 301 (1992) | MR 1217970 | Zbl 0780.18009
[20] Homology, Grundlerhren der Mathematischen Wissenschaften Springer-Verlag, Berlin Tome 114 (1963) | MR 349792 | Zbl 0133.26502
[21] The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York Tome 271 (1972) | MR 420610 | Zbl 0244.55009
[22] Another proof of M. Kontsevich formality theorem (1998) (Preprint arXiv :math.QA/9803025 v 4)
[23] Noncommutative differential calculus, homotopy BV algebras and formality conjectures, Methods Funct. Anal. Topology, Tome 6 (2000) no. 2, pp. 85-100 | MR 1783778 | Zbl 0965.58010