Nous utilisons le calcul de Malliavin pour montrer la convergence dans de la variation quadratique à poids du mouvement brownien bifractionnaire (biFBM) d’indices et lorsque et .
We prove, by means of Malliavin calculus, the convergence in of some properly renormalized weighted quadratic variations of bi-fractional Brownian motion (biFBM) with parameters and , when and .
@article{AMBP_2010__17_1_165_0, author = {Belfadli, Rachid}, title = {Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {17}, year = {2010}, pages = {165-181}, doi = {10.5802/ambp.281}, zbl = {1196.60066}, mrnumber = {2674657}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2010__17_1_165_0} }
Belfadli, Rachid. Asymptotic behavior of weighted quadratic variation of bi-fractional Brownian motion. Annales mathématiques Blaise Pascal, Tome 17 (2010) pp. 165-181. doi : 10.5802/ambp.281. http://gdmltest.u-ga.fr/item/AMBP_2010__17_1_165_0/
[1] Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal., Tome 13 (3) (1938), pp. 425-441 | MR 716933 | Zbl 0518.60023
[2] Milstein’s type schemes for fractional SDEs, Ann. Inst. Henri Poincaré Probab. Stat., Tome 45 (2009) no. 4, pp. 1085-1098 | Article | Numdam | MR 2572165
[3] An example of infnite dimensional quasi-helix, Contemporary Mathematics, Amer. Math. Soc., Tome 336 (2003), pp. 195-201 | MR 2037165 | Zbl 1046.60033
[4] Exact rates of convergence of some approximations schemes associated to SDEs driven by a fractional Brownian motion, J. Theor. Probab., Tome 20(4) (2008), pp. 871-899 | MR 2359060 | Zbl 1141.60043
[5] Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, Ann. Probab., Tome 36(6) (2008), pp. 2159-2175 | Article | MR 2478679 | Zbl 1155.60010
[6] Central and non central limit theorems for weighted power variations of fractional brownian motion (2008) (Ann. Inst. Henri Poincaré, Probab. Stat. to appear)
[7] Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case , Ann. Probab., Tome 37 (2009) no. 6, pp. 2200-2230 | Article | MR 2573556
[8] The Malliavin calculus and related topics, Springer Verlag, 2 nd edition, Berlin (2006) | MR 2200233 | Zbl 1099.60003
[9] On the bifractional Brownian motion, Stochastic Process. Appl., Tome 5 (2006), pp. 830-856 | Article | MR 2218338 | Zbl 1100.60019
[10] Stable non-Gaussian Random Processes. Stochastic models with infinite variance, Chapman & Hall, New York (1994) | MR 1280932 | Zbl 0925.60027
[11] Sample Path Properties of Bifractional Brownian Motion, Bernoulli, Tome 13 (4) (2007), pp. 1023-1052 | Article | MR 2364225 | Zbl 1132.60034