Necessary condition for measures which are (L q ,L p ) multipliers
Kpata, Bérenger Akon ; Fofana, Ibrahim ; Koua, Konin
Annales mathématiques Blaise Pascal, Tome 16 (2009), p. 339-353 / Harvested from Numdam

Soit G un groupe localement compact et ρ la mesure de Haar à gauche sur G. Etant donné une mesure de Radon positive μ, nous établissons une condition nécessaire sur les couples q,p pour lesquels μ est un multiplicateur de L q G,ρ dans L p G,ρ. Appliqué à n , notre résultat est plus fort que la condition nécessaire établie par Oberlin dans [14] et est très lié à une classe de mesures définie par Fofana dans [7].

Lorsque G est le tore, nous obtenons une généralisation d’une condition énoncée par Oberlin [15] et l’améliorons dans certains cas.

Let G be a locally compact group and ρ the left Haar measure on G. Given a non-negative Radon measure μ, we establish a necessary condition on the pairs q,p for which μ is a multiplier from L q G,ρ to L p G,ρ. Applied to n , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].

When G is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/ambp.271
Classification:  43A05,  43A15
Mots clés: Mesure de Cantor-Lebesgue, mesure L q -improving, mesure de Radon positive
@article{AMBP_2009__16_2_339_0,
     author = {Kpata, B\'erenger Akon and Fofana, Ibrahim and Koua, Konin},
     title = {Necessary condition for measures which are $(L^{q},L^{p})$ multipliers},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     year = {2009},
     pages = {339-353},
     doi = {10.5802/ambp.271},
     zbl = {1178.43001},
     mrnumber = {2568870},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2009__16_2_339_0}
}
Kpata, Bérenger Akon; Fofana, Ibrahim; Koua, Konin. Necessary condition for measures which are $(L^{q},L^{p})$ multipliers. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 339-353. doi : 10.5802/ambp.271. http://gdmltest.u-ga.fr/item/AMBP_2009__16_2_339_0/

[1] Beckner, William; Janson, Svante; Jerison, David Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth, Belmont, CA (Wadsworth Math. Ser.) (1983), pp. 32-43 | MR 730056

[2] Bonami, A. Étude des coefficients de Fourier des fonctions de L p G, Ann. Inst. Fourier (Grenoble), Tome 20 (1970), pp. 335-402 | Article | Numdam | MR 283496 | Zbl 0195.42501

[3] Christ, M. A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana, Tome vol. 1, n. ∘ 4 (1985), pp. 79-83 | MR 850410 | Zbl 0644.42011

[4] Falconer, K. J The geometry of fractal sets, Cambridge University Press, London/New York (1985) | MR 867284 | Zbl 0587.28004

[5] Falconer, K. J Fractal geometry, Wiley, New York (1990) | MR 1102677 | Zbl 0689.28003

[6] Fofana, I. Continuité de l’intégrale fractionnaire et espaces L q ,l p α , C. R. A. S. Paris, Tome t. 308, série I (1989), pp. 525-527 | MR 1001045 | Zbl 0669.42004

[7] Fofana, I. Transformation de Fourier dans L q ,l p α et M p,α , Afrika matematika, Tome série 3, vol. 5 (1995), pp. 53-76 | MR 1431325 | Zbl 0885.42005

[8] Fofana, I. Espaces L q ,l p α et Continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood, Afrika matematika, Tome série 3, vol. 12 (2001), pp. 23-37 | MR 1876792 | Zbl 1026.42020

[9] Graham, C. C.; Hare, K.; Ritter, D. The size of L p -improving measures, J. Funct. Anal., Tome 84 (1989), pp. 472-495 | Article | MR 1001469 | Zbl 0678.43001

[10] Larsen, R. An introduction to the theory of multipliers, Springer-Verlag, Berlin, Heidelberg, New York (1971) | MR 435738 | Zbl 0213.13301

[11] Lau, K-S. Fractal Measures and Mean ρ-Variations, J. Funct. Anal., Tome 108 (1992), pp. 427-457 | Article | MR 1176682 | Zbl 0767.28007

[12] Oberlin, D. M. A convolution property of the Cantor-Lebesgue measure, Colloq. Math., Tome 47 (1982), pp. 113-117 | MR 679392 | Zbl 0501.42007

[13] Oberlin, D. M. Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc., Tome 129 (2000), pp. 517-526 | Article | MR 1780502 | Zbl 0972.42009

[14] Oberlin, D. M. Affine dimension : measuring the vestiges of curvature, Michigan Math. J., Tome 51 (2003), pp. 13-26 | Article | MR 1960918 | Zbl 1035.53023

[15] Oberlin, D. M. A convolution property of the Cantor-Lebesgue measure II, Colloq. Math., Tome 97 (2003) no. 1, pp. 23-28 | Article | MR 2010539 | Zbl 1095.42007

[16] Ritter, D. Most Riesz product measures are L p -improving, Proc. Amer. Math. Soc., Tome 97 (1986), pp. 291-295 | MR 835883 | Zbl 0593.43002

[17] Ritter, D. Some singular measures on the circle which improve L p spaces, Colloq. Math., Tome 52 (1987), pp. 133-144 | MR 891505 | Zbl 0637.43002

[18] Stein, E. M. Harmonic Analysis on n , Studies in Harmonic Analysis, MAA Studies in Mathematics Tome 13 (1976), pp. 97-135 (Mathematical Association of America, Washington, D. C.) | MR 461002 | Zbl 0337.42016

[19] Zygmund, A. Trigonometric series. 2nd ed. Vol. I, Cambridge University Press, New York (1959) | MR 107776 | Zbl 0085.05601