Soit un groupe localement compact et la mesure de Haar à gauche sur . Etant donné une mesure de Radon positive , nous établissons une condition nécessaire sur les couples pour lesquels est un multiplicateur de dans . Appliqué à , notre résultat est plus fort que la condition nécessaire établie par Oberlin dans [14] et est très lié à une classe de mesures définie par Fofana dans [7].
Lorsque est le tore, nous obtenons une généralisation d’une condition énoncée par Oberlin [15] et l’améliorons dans certains cas.
Let be a locally compact group and the left Haar measure on . Given a non-negative Radon measure , we establish a necessary condition on the pairs for which is a multiplier from to . Applied to , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].
When is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.
@article{AMBP_2009__16_2_339_0, author = {Kpata, B\'erenger Akon and Fofana, Ibrahim and Koua, Konin}, title = {Necessary condition for measures which are $(L^{q},L^{p})$ multipliers}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {16}, year = {2009}, pages = {339-353}, doi = {10.5802/ambp.271}, zbl = {1178.43001}, mrnumber = {2568870}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2009__16_2_339_0} }
Kpata, Bérenger Akon; Fofana, Ibrahim; Koua, Konin. Necessary condition for measures which are $(L^{q},L^{p})$ multipliers. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 339-353. doi : 10.5802/ambp.271. http://gdmltest.u-ga.fr/item/AMBP_2009__16_2_339_0/
[1] Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth, Belmont, CA (Wadsworth Math. Ser.) (1983), pp. 32-43 | MR 730056
[2] Étude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier (Grenoble), Tome 20 (1970), pp. 335-402 | Article | Numdam | MR 283496 | Zbl 0195.42501
[3] A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana, Tome vol. 1, n. ∘ 4 (1985), pp. 79-83 | MR 850410 | Zbl 0644.42011
[4] The geometry of fractal sets, Cambridge University Press, London/New York (1985) | MR 867284 | Zbl 0587.28004
[5] Fractal geometry, Wiley, New York (1990) | MR 1102677 | Zbl 0689.28003
[6] Continuité de l’intégrale fractionnaire et espaces , C. R. A. S. Paris, Tome t. 308, série I (1989), pp. 525-527 | MR 1001045 | Zbl 0669.42004
[7] Transformation de Fourier dans et , Afrika matematika, Tome série 3, vol. 5 (1995), pp. 53-76 | MR 1431325 | Zbl 0885.42005
[8] Espaces et Continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood, Afrika matematika, Tome série 3, vol. 12 (2001), pp. 23-37 | MR 1876792 | Zbl 1026.42020
[9] The size of -improving measures, J. Funct. Anal., Tome 84 (1989), pp. 472-495 | Article | MR 1001469 | Zbl 0678.43001
[10] An introduction to the theory of multipliers, Springer-Verlag, Berlin, Heidelberg, New York (1971) | MR 435738 | Zbl 0213.13301
[11] Fractal Measures and Mean -Variations, J. Funct. Anal., Tome 108 (1992), pp. 427-457 | Article | MR 1176682 | Zbl 0767.28007
[12] A convolution property of the Cantor-Lebesgue measure, Colloq. Math., Tome 47 (1982), pp. 113-117 | MR 679392 | Zbl 0501.42007
[13] Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc., Tome 129 (2000), pp. 517-526 | Article | MR 1780502 | Zbl 0972.42009
[14] Affine dimension : measuring the vestiges of curvature, Michigan Math. J., Tome 51 (2003), pp. 13-26 | Article | MR 1960918 | Zbl 1035.53023
[15] A convolution property of the Cantor-Lebesgue measure II, Colloq. Math., Tome 97 (2003) no. 1, pp. 23-28 | Article | MR 2010539 | Zbl 1095.42007
[16] Most Riesz product measures are -improving, Proc. Amer. Math. Soc., Tome 97 (1986), pp. 291-295 | MR 835883 | Zbl 0593.43002
[17] Some singular measures on the circle which improve spaces, Colloq. Math., Tome 52 (1987), pp. 133-144 | MR 891505 | Zbl 0637.43002
[18] Harmonic Analysis on , Studies in Harmonic Analysis, MAA Studies in Mathematics Tome 13 (1976), pp. 97-135 (Mathematical Association of America, Washington, D. C.) | MR 461002 | Zbl 0337.42016
[19] Trigonometric series. 2nd ed. Vol. I, Cambridge University Press, New York (1959) | MR 107776 | Zbl 0085.05601