On produit des nouveaux exemples d’applications harmoniques, ayant chacune comme espace de départ une variété á courbure constante et comme espace d’arrivée son fibré tangent , muni d’une métrique -naturelle Riemannienne appropriée. En particulier, on va déterminer une famille de métriques -naturelles Riemanniennes sur , par rapport auxquelles tous les champs de vecteurs gradients conformes définissent des applications harmoniques de dans .
We produce new examples of harmonic maps, having as source manifold a space of constant curvature and as target manifold its tangent bundle , equipped with a suitable Riemannian -natural metric. In particular, we determine a family of Riemannian -natural metrics on , with respect to which all conformal gradient vector fields define harmonic maps from into .
@article{AMBP_2009__16_2_305_0, author = {Abbassi, Mohamed Tahar Kadaoui and Calvaruso, Giovanni and Perrone, Domenico}, title = {Some examples of harmonic maps for $g$-natural metrics}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {16}, year = {2009}, pages = {305-320}, doi = {10.5802/ambp.269}, zbl = {1183.58008}, mrnumber = {2568868}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2009__16_2_305_0} }
Abbassi, Mohamed Tahar Kadaoui; Calvaruso, Giovanni; Perrone, Domenico. Some examples of harmonic maps for $g$-natural metrics. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 305-320. doi : 10.5802/ambp.269. http://gdmltest.u-ga.fr/item/AMBP_2009__16_2_305_0/
[1] Harmonic sections of tangent bundles equipped with Riemannian -natural metrics (2007) (Submitted, online version: arXiv:math/0710.3668) | MR 2805204 | Zbl 1226.53062
[2] On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), Tome 41 (2005) no. 1, pp. 71-92 | MR 2142144 | Zbl 1114.53015
[3] On some hereditary properties of Riemannian -natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl., Tome 22 (2005) no. 1, pp. 19-47 | Article | MR 2106375 | Zbl 1068.53016
[4] Harmonic morphisms between Riemannian manifolds, The Clarendon Press Oxford University Press, Oxford, London Mathematical Society Monographs. New Series, Tome 29 (2003) | MR 2044031 | Zbl 1055.53049
[5] Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl., Tome 25 (2007) no. 3, pp. 322-334 | Article | MR 2330461 | Zbl 1128.53037
[6] Harmonic maps and sections on spheres (2008) (preprint)
[7] A report on harmonic maps, Bull. London Math. Soc., Tome 10 (1978) no. 1, pp. 1-68 | Article | MR 495450 | Zbl 0401.58003
[8] Harmonic mappings of Riemannian manifolds, Amer. J. Math., Tome 86 (1964), pp. 109-160 | Article | MR 164306 | Zbl 0122.40102
[9] Harmonic sections of tangent bundles, J. Math. Tokushima Univ., Tome 13 (1979), pp. 23-27 | MR 563393 | Zbl 0427.53019
[10] Natural operations in differential geometry, Springer-Verlag, Berlin (1993) | MR 1202431 | Zbl 0782.53013
[11] Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B, Tome 284 (1977) no. 14, p. A815-A818 | MR 431035 | Zbl 0349.53015
[12] The tangent bundles and harmonicity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Tome 43 (1997) no. 1, p. 151-172 (1998) | MR 1679113 | Zbl 0989.53039
[13] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), Tome 11 (1978) no. 2, pp. 211-228 | Numdam | MR 510549 | Zbl 0392.31009
[14] Maps between Riemannian manifolds with critical energy with respect to deformations of metrics, Rend. Mat. (7), Tome 3 (1983) no. 1, pp. 53-63 | MR 710809 | Zbl 0514.53037
[15] Calculus of variations and harmonic maps, American Mathematical Society, Providence, RI, Translations of Mathematical Monographs, Tome 132 (1993) (Translated from the 1990 Japanese original by the author) | MR 1252178 | Zbl 0799.58001
[16] Some results on stable harmonic maps, Duke Math. J., Tome 47 (1980) no. 3, pp. 609-613 | Article | MR 587168 | Zbl 0513.58019