On dit qu’un groupe est un PC-groupe, si pour tout , est une extension d’un groupe polycyclique par un groupe fini. Un non-PC-groupe minimal est un groupe qui n’est pas un PC-groupe mais dont tous les sous-groupes propres sont des PC-groupes. Notre principal résultat est qu’un non-PC-groupe minimal ayant un groupe quotient fini non-trivial est une extension cyclique finie d’un groupe abélien divisible de rang fini.
A group is said to be a PC-group, if is a polycyclic-by-finite group for all . A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.
@article{AMBP_2009__16_2_277_0, author = {Russo, Francesco and Trabelsi, Nadir}, title = {On minimal non-PC-groups}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {16}, year = {2009}, pages = {277-286}, doi = {10.5802/ambp.267}, zbl = {1187.20042}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2009__16_2_277_0} }
Russo, Francesco; Trabelsi, Nadir. On minimal non-PC-groups. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 277-286. doi : 10.5802/ambp.267. http://gdmltest.u-ga.fr/item/AMBP_2009__16_2_277_0/
[1] On PC-hypercentral and CC-hypercentral groups, Comm. Alg., Tome 26 (1998), pp. 3045-3055 | Article | MR 1635906 | Zbl 0911.20029
[2] Minimal non-FC-groups, VI All Union Symposium Group Theory (Čerkassy, 1978), Naukova Dumka (1980), pp. 97-102 | MR 611367 | Zbl 0454.20042
[3] Infinite groups of Miller-Moreno type, Acta Math. Hungar., Tome 26 (1975), pp. 369-376 | MR 404457 | Zbl 0335.20013
[4] Groups whose proper subgroups are locally finite-by-nilpotent, Ann. Math. Blaise Pascal, Tome 14 (2007), pp. 29-35 | Article | Numdam | MR 2298722 | Zbl 1131.20023
[5] Groups with polycyclic-by-finite conjugacy classes, Boll. U. M. I., Tome 7 (1990), pp. 35-55 | MR 1049656 | Zbl 0707.20018
[6] Abelian Groups, Pergamon Press, London (1967) | MR 111783 | Zbl 0100.02803
[7] Arch. Math., Soviet Math. Dokl., Tome 15 (1964), pp. 241-250 | MR 170949 | Zbl 0134.26102
[8] Infinite groups with cyclic subgroups, Soviet Math. Dokl., Tome 20 (1979), pp. 343-346 | MR 527709 | Zbl 0431.20025
[9] Minimal Non-CC-Groups, Comm. Algebra, Tome 16 (1988), pp. 1231-1242 | Article | MR 939041 | Zbl 0644.20025
[10] Groups with extremal classes of conjugated elements, Sibirski Math. Z., Tome 5 (1964), pp. 891-895 | MR 168658
[11] Finiteness conditions and generalized soluble groups, Springer Verlag, Berlin (1972) | Zbl 0243.20033
[12] FC-groups, Pitman, Boston (1984) | MR 742777 | Zbl 0547.20031
[13] On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups, C. R. Acad. Sci. Paris Ser. I, Tome 344 (2007), pp. 353-356 | MR 2310669 | Zbl 1113.20032
[14] Groups whose proper subgroups are finite-by-nilpotent, Arch. Math., Tome 66 (1996), pp. 353-359 | Article | MR 1383898 | Zbl 0857.20015