On minimal non-PC-groups
[Sur les non-PC-groupes minimaux]
Russo, Francesco ; Trabelsi, Nadir
Annales mathématiques Blaise Pascal, Tome 16 (2009), p. 277-286 / Harvested from Numdam

On dit qu’un groupe G est un PC-groupe, si pour tout xG, G/C G (x G ) est une extension d’un groupe polycyclique par un groupe fini. Un non-PC-groupe minimal est un groupe qui n’est pas un PC-groupe mais dont tous les sous-groupes propres sont des PC-groupes. Notre principal résultat est qu’un non-PC-groupe minimal ayant un groupe quotient fini non-trivial est une extension cyclique finie d’un groupe abélien divisible de rang fini.

A group G is said to be a PC-group, if G/C G (x G ) is a polycyclic-by-finite group for all xG. A minimal non-PC-group is a group which is not a PC-group but all of whose proper subgroups are PC-groups. Our main result is that a minimal non-PC-group having a non-trivial finite factor group is a finite cyclic extension of a divisible abelian group of finite rank.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/ambp.267
Classification:  20F24,  20F15,  20E34,  20E45
@article{AMBP_2009__16_2_277_0,
     author = {Russo, Francesco and Trabelsi, Nadir},
     title = {On minimal non-PC-groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     year = {2009},
     pages = {277-286},
     doi = {10.5802/ambp.267},
     zbl = {1187.20042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2009__16_2_277_0}
}
Russo, Francesco; Trabelsi, Nadir. On minimal non-PC-groups. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 277-286. doi : 10.5802/ambp.267. http://gdmltest.u-ga.fr/item/AMBP_2009__16_2_277_0/

[1] Beidleman, J. C.; Galoppo, A.; Manfredino, M. On PC-hypercentral and CC-hypercentral groups, Comm. Alg., Tome 26 (1998), pp. 3045-3055 | Article | MR 1635906 | Zbl 0911.20029

[2] Belyaev, V. V. Minimal non-FC-groups, VI All Union Symposium Group Theory (Čerkassy, 1978), Naukova Dumka (1980), pp. 97-102 | MR 611367 | Zbl 0454.20042

[3] Belyaev, V. V.; Sesekin, N. F. Infinite groups of Miller-Moreno type, Acta Math. Hungar., Tome 26 (1975), pp. 369-376 | MR 404457 | Zbl 0335.20013

[4] Dilmi, A. Groups whose proper subgroups are locally finite-by-nilpotent, Ann. Math. Blaise Pascal, Tome 14 (2007), pp. 29-35 | Article | Numdam | MR 2298722 | Zbl 1131.20023

[5] Franciosi, S.; De Giovanni, F.; Tomkinson, M. J. Groups with polycyclic-by-finite conjugacy classes, Boll. U. M. I., Tome 7 (1990), pp. 35-55 | MR 1049656 | Zbl 0707.20018

[6] Fuchs, L. Abelian Groups, Pergamon Press, London (1967) | MR 111783 | Zbl 0100.02803

[7] Newman, M. F.; Wiegold, J. Arch. Math., Soviet Math. Dokl., Tome 15 (1964), pp. 241-250 | MR 170949 | Zbl 0134.26102

[8] Ol’Shanskii, A. Yu. Infinite groups with cyclic subgroups, Soviet Math. Dokl., Tome 20 (1979), pp. 343-346 | MR 527709 | Zbl 0431.20025

[9] Otál, J.; Peña, J. M. Minimal Non-CC-Groups, Comm. Algebra, Tome 16 (1988), pp. 1231-1242 | Article | MR 939041 | Zbl 0644.20025

[10] Polovickii, Ya. D. Groups with extremal classes of conjugated elements, Sibirski Math. Z., Tome 5 (1964), pp. 891-895 | MR 168658

[11] Robinson, D. J. Finiteness conditions and generalized soluble groups, Springer Verlag, Berlin (1972) | Zbl 0243.20033

[12] Tomkinson, M. J. FC-groups, Pitman, Boston (1984) | MR 742777 | Zbl 0547.20031

[13] Trabelsi, N. On minimal non-(torsion-by-nilpotent) and non-((locally finite)-by-nilpotent) groups, C. R. Acad. Sci. Paris Ser. I, Tome 344 (2007), pp. 353-356 | MR 2310669 | Zbl 1113.20032

[14] Xu, M. Groups whose proper subgroups are finite-by-nilpotent, Arch. Math., Tome 66 (1996), pp. 353-359 | Article | MR 1383898 | Zbl 0857.20015