In this paper, we give a generalization of Baer Theorem on the injective property of divisible abelian groups. As consequences of the obtained result we find a sufficient condition for a group to express as semi-direct product of a divisible subgroup and some subgroup . We also apply the main Theorem to the -groups with center of index , for some prime . For these groups we compute the number of conjugacy classes and the number of abelian maximal subgroups and the number of nonabelian maximal subgroups.
@article{AMBP_2009__16_2_267_0,
author = {Noui, Lemnouar},
title = {Properties of subgroups not containing their centralizers},
journal = {Annales math\'ematiques Blaise Pascal},
volume = {16},
year = {2009},
pages = {267-275},
doi = {10.5802/ambp.266},
zbl = {1196.20034},
mrnumber = {2568865},
language = {en},
url = {http://dml.mathdoc.fr/item/AMBP_2009__16_2_267_0}
}
Noui, Lemnouar. Properties of subgroups not containing their centralizers. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 267-275. doi : 10.5802/ambp.266. http://gdmltest.u-ga.fr/item/AMBP_2009__16_2_267_0/
[1] The number of conjugacy classes, Amer. Math. Monthly, Tome 105 (1998) no. 4, pp. 359-361 | Article | MR 1614889 | Zbl 0924.20015
[2] Finiteness conditions and generalized soluble groups. Part 1, Springer-Verlag, New York (1972) (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62) | MR 332989 | Zbl 0243.20032
[3] A course in the theory of groups, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 80 (1996) | MR 1357169 | Zbl 0836.20001
[4] A lower bound for the number of conjugacy classes in a finite nilpotent group, Pacific J. Math., Tome 80 (1979) no. 1, p. 253-254 | MR 534714 | Zbl 0377.20017
[5] Subgroups of finite abelian groups (1995) (Summer research paper, Haverford College)