Soient est un entier sans facteurs carrés, , , le -corps de classes de Hilbert de , le -corps de classes de Hilbert de et le groupe de Galois de . Notre but est de montrer qu’il existe une forme de tel que le -groupe est non métacyclique et de donner une condition nécessaire et suffisante pour que le groupe soit métacyclique dans le cas où avec un nombre premier tel que .
Let be positive square-free integers, and . Let be the Hilbert -class field of , be the Hilbert -class field of and be the Galois group of . Our goal is to show that there is some form of such is a nonmetacyclic -group and give the necessary condition and sufficient for the group to be metacyclic in case with a prime number such that .
@article{AMBP_2009__16_1_83_0, author = {Azizi, Abdelmalek and Taous, Mohammed}, title = {Condition n\'ecessaire et suffisante pour que certain groupe de Galois soit m\'etacyclique}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {16}, year = {2009}, pages = {83-92}, doi = {10.5802/ambp.255}, zbl = {1168.11046}, mrnumber = {2514529}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2009__16_1_83_0} }
Azizi, Abdelmalek; Taous, Mohammed. Condition nécessaire et suffisante pour que certain groupe de Galois soit métacyclique. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 83-92. doi : 10.5802/ambp.255. http://gdmltest.u-ga.fr/item/AMBP_2009__16_1_83_0/
[1] Capitulation of the -ideal Classes of Where and are primes such that , and , Lecture notes in pure and applied mathematics, Tome 208 (1999), pp. 13-19 | MR 1724671 | Zbl 1003.11050
[2] Sur une question de Capitulation, Proc. Amer. Math. Soc, Tome 130 (2002), pp. 2197-2202 | Article | MR 1897477 | Zbl 1010.11061
[3] Capitulation of -ideal classes of in the genus field of where is prime such that , IJPAM, Tome 35 (2007) no. 2, pp. 481-487 | MR 2311554 | Zbl pre05238028
[4] On -groups of almost maximal class, Publ. Math, Tome 65 (2004) no. 1-2, pp. 97-131 | MR 2075257 | Zbl 1070.20021
[5] Imaginary Quadratic Fields with Cyclic , J. Number Theory, Tome 67 (1997), pp. 229-245 | Article | MR 1486501 | Zbl 0919.11074
[6] Real quadratic fields with abelian -class field tower, J. Number Theory, Tome 73 (1998), pp. 182-194 | Article | MR 1658015 | Zbl 0919.11073
[7] Imaginary quadratic fields with and rank , Pac. J. Math, Tome 198 (2001), pp. 15-31 | Article | MR 1831970 | Zbl 1063.11038
[8] Number Fields with -class Number Isomorphic to (1994) (preprint)
[9] On Prime Power Groups in which the Derived Group has Two Generators, Proc. Cambridge Phil. Soc, Tome 53 (1957), pp. 19-27 | Article | MR 81904 | Zbl 0077.03202
[10] On a special class of -groups, Acta Math, Tome 100 (1958), pp. 45-92 | Article | MR 102558 | Zbl 0083.24802
[11] -Groups of Almost Maximal Class, J. Austral. Math. Soc. Ser. A, Tome 19 (1975), pp. 343-357 | Article | MR 382435 | Zbl 0309.20006
[12] Number fields with class number congruent to and Hilbert’s theorem , J. Number Theory, Tome 8 (1976) no. 3, pp. 271-279 | Article | MR 417128 | Zbl 0334.12019
[13] Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen Zahlkörpers, Nagoya Math. J, Tome 6 (1953), pp. 119-127 | MR 59960 | Zbl 0053.21902
[14] On imaginary bicyclic biquadratic fields with cyclic -class group, J. Number Theory, Tome 53 (1995), pp. 88-99 | Article | MR 1344833 | Zbl 0831.11059
[15] A Remark on the Class Field Tower, J. Number Theory, Tome 12 (1937), pp. 82-85