Soient le corps quadratique réel (respectivement le corps biquadratique ), un entier positif sans facteur carré, une extension cubique cyclique non ramifiée de , diédrale sur totalement réelle, (respectivement diédrale sur .)
On constate qu’on a deux structures possibles pour le groupe des unités de , notées et .
Let be a real quadratic fields of type (respectively biquadratic of type ), positive integer, square free, an extension not ramified of dihedral over totally real, (respectively dihedral over .)
We notice that have two possible structures for the group of units of , denoted by and .
@article{AMBP_2009__16_1_71_0, author = {Azizi, Abdelmalek and Ayadi, Mohamed and Ismaili, Moulay Chrif and Talbi, Mohamed}, title = {Sur les unit\'es des extensions cubiques cycliques non ramifi\'ees sur certains sous-corps de $\mathbf{Q}(\sqrt{d},\sqrt{-3})$}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {16}, year = {2009}, pages = {71-82}, doi = {10.5802/ambp.254}, zbl = {1187.11040}, mrnumber = {2514528}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2009__16_1_71_0} }
Azizi, Abdelmalek; Ayadi, Mohamed; Ismaili, Moulay Chrif; Talbi, Mohamed. Sur les unités des extensions cubiques cycliques non ramifiées sur certains sous-corps de $\mathbf{Q}(\sqrt{d},\sqrt{-3})$. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 71-82. doi : 10.5802/ambp.254. http://gdmltest.u-ga.fr/item/AMBP_2009__16_1_71_0/
[1] Unités de certains corps de nombres imaginaires et abeliens sur , Ann.Sci.Math. Quebec, Tome 23 (1999), pp. 71-92 | MR 1721726 | Zbl 1041.11072
[2] Ranks of 3-class groups of non-Galois cubic fields, Acta Arith., Tome 30 (1976) no. 4, pp. 307-322 | MR 422198 | Zbl 0297.12006
[3] Algerbraic number fields, Academic press newyork,baton rouge, louisiana (1992) | Zbl 0307.12001
[4] Parametrization of the quadratic fields whose class numbers are divisible by three, J. Number Theory, Tome 80 (2000) no. 2, pp. 209-217 | Article | MR 1740511 | Zbl 0976.11050
[5] Class Groups of dihedralExtansions, Math, Nacher, Tome 278 (2005), pp. 679-691 | Article | MR 2135500 | Zbl 1067.11069
[6] Unités et nombre de classes d’une extension diédrale de , Société mathématique de France. Astérisque (1975), p. 24-25 | MR 376610 | Zbl 0313.12002
[7] On the class field tower of some biquadratic fields, Acta Arithmetica, Tome 107.4 (2003), pp. 327-336 | Article | MR 1970518 | Zbl 1064.11074