Nous caractérisons les extensions triviales semiGoldie, de cogénération finie, mininjectives et quasi-Frobeniusiens. Comme application, nous montrons que tout anneau noethérien s’injecte dans un anneau quasi-Frobeniusien.
We characterize semiGoldie, finitely cogenerated, mininjective and quasi-Frobenius trivial extensions. As application, we obtain that every nœtherian ring can be embedded in a quasi-Frobenius Ring.
@article{AMBP_2009__16_1_139_0, author = {Kourki, Farid}, title = {Sur les Extensions Triviales Commutatives}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {16}, year = {2009}, pages = {139-150}, doi = {10.5802/ambp.260}, zbl = {pre05554666}, mrnumber = {2514534}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2009__16_1_139_0} }
Kourki, Farid. Sur les Extensions Triviales Commutatives. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 139-150. doi : 10.5802/ambp.260. http://gdmltest.u-ga.fr/item/AMBP_2009__16_1_139_0/
[1] Algèbre commutative, Chapitres 1 et 2, Masson, Paris (1985)
[2] Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra, Tome 19 (1994), pp. 1867-1892 | MR 1121111 | Zbl 0729.16015
[3] Commutative coherent rings, Lecture Notes in Math., Springer–Verlag (1989) | MR 999133 | Zbl 0745.13004
[4] Ring Theory : Nonsingular Rings and Modules, Marcel Dekker, New York (1976) | MR 429962 | Zbl 0336.16001
[5] Commutative rings with zero divisors, Marcel Dekker, NewYork-Basel (1988) | MR 938741 | Zbl 0637.13001
[6] Modules and rings, Academic Press, London (1982) ((English translation)) | MR 667346 | Zbl 0523.16001
[7] Lectures on modules and rings, Graduate Texts in Math., NewYork-Basel (1999) | MR 1653294 | Zbl 0911.16001
[8] Mininjective rings, J. Algebra, Tome 187 (1997), pp. 548-578 | Article | MR 1430998 | Zbl 0879.16002
[9] The dual of the notion of ’finitely generated’, J. London Math. Soc., Tome 43 (1968), pp. 643-646 | Article | MR 248171 | Zbl 0164.04003