On D 5 -polynomials with integer coefficients
Kishi, Yasuhiro
Annales mathématiques Blaise Pascal, Tome 16 (2009), p. 113-125 / Harvested from Numdam

We give a family of D 5 -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.

Publié le : 2009-01-01
DOI : https://doi.org/10.5802/ambp.258
Classification:  11R29
@article{AMBP_2009__16_1_113_0,
     author = {Kishi, Yasuhiro},
     title = {On $D\_5$-polynomials with integer coefficients},
     journal = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     year = {2009},
     pages = {113-125},
     doi = {10.5802/ambp.258},
     zbl = {1173.11059},
     mrnumber = {2514531},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AMBP_2009__16_1_113_0}
}
Kishi, Yasuhiro. On $D_5$-polynomials with integer coefficients. Annales mathématiques Blaise Pascal, Tome 16 (2009) pp. 113-125. doi : 10.5802/ambp.258. http://gdmltest.u-ga.fr/item/AMBP_2009__16_1_113_0/

[1] Ankeny, N. C.; Chowla, S. On the divisibility of the class number of quadratic fields, Pacific J. Math., Tome 5 (1955), pp. 321-324 | MR 85301 | Zbl 0065.02402

[2] Byeon, Dongho Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math., Tome 120 (2006) no. 2, pp. 211-215 | Article | MR 2234249 | Zbl 1153.11337

[3] Ichimura, H. Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg, Tome 73 (2003), pp. 281-288 | Article | MR 2028521 | Zbl 1050.11090

[4] Imaoka, Masafumi; Kishi, Yasuhiro On dihedral extensions and Frobenius extensions, Galois theory and modular forms, Kluwer Acad. Publ., Boston, MA (Dev. Math.) Tome 11 (2004), pp. 195-220 | MR 2059764 | Zbl 1068.11070

[5] Mestre, Jean-François Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques, J. Reine Angew. Math., Tome 343 (1983), pp. 23-35 | Article | MR 705875 | Zbl 0502.12004

[6] Nagell, T. Über die Klassenzahl imaginär-quadratischer Zahlköper, Abh. Math. Sem. Univ. Hamburg, Tome 1 (1922), pp. 140-150 | Article

[7] Nakamura, S. A microcosm of Fibonacci numbers (Japanese), Nippon Hyoronsha Co., Tokyo (2002)

[8] Parry, Charles J. On the class number of relative quadratic fields, Math. Comp., Tome 32 (1978) no. 144, pp. 1261-1270 | Article | MR 502013 | Zbl 0401.12008

[9] Ribenboim, Paulo The new book of prime number records, Springer-Verlag, New York (1996) | MR 1377060 | Zbl 0856.11001

[10] Sase, Masahiko On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci., Tome 74 (1998) no. 7, pp. 120-123 | Article | MR 1658854 | Zbl 0926.11081

[11] Weinberger, P. J. Real quadratic fields with class numbers divisible by n, J. Number Theory, Tome 5 (1973), pp. 237-241 | Article | MR 335471 | Zbl 0287.12007

[12] Yamamoto, Yoshihiko On unramified Galois extensions of quadratic number fields, Osaka J. Math., Tome 7 (1970), pp. 57-76 | MR 266898 | Zbl 0222.12003