Let be a real form of a complex semisimple Lie group . Recall that Rossmann defined a Weyl group action on Lagrangian cycles supported on the conormal bundle of the flag variety of . We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open -orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.
@article{AMBP_2008__15_2_153_0,
author = {Bo\v zi\v cevi\'c, Mladen},
title = {Constant term in Harish-Chandra's limit formula},
journal = {Annales math\'ematiques Blaise Pascal},
volume = {15},
year = {2008},
pages = {153-168},
doi = {10.5802/ambp.245},
zbl = {1162.22013},
mrnumber = {2468041},
language = {en},
url = {http://dml.mathdoc.fr/item/AMBP_2008__15_2_153_0}
}
Božičević, Mladen. Constant term in Harish-Chandra’s limit formula. Annales mathématiques Blaise Pascal, Tome 15 (2008) pp. 153-168. doi : 10.5802/ambp.245. http://gdmltest.u-ga.fr/item/AMBP_2008__15_2_153_0/
[1] Weyl group representations and nilpotent orbits, Representations of Reductive Groups, Progr. Math. 40, Birkhäuser, Boston (1982), pp. 21-32 | MR 733804 | Zbl 0537.22013
[2] Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer-Verlag, Berlin (1994) | MR 1299527 | Zbl 0808.14038
[3] Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier, Tome 58 (2008), pp. 1213-1232 | Article | Numdam | MR 2427959 | Zbl 1153.22012 | Zbl pre05303674
[4] Fourier transform on a semisimple Lie algebra II, Amer. J. Math., Tome 79 (1957), pp. 733-760 | Article | MR 96138 | Zbl 0080.10201
[5] Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer-Verlag, Berlin (1990) | MR 1074006 | Zbl 0709.18001
[6] A localization argument for characters of reductive Lie groups, J. Funct. Anal., Tome 203 (2003), pp. 197-236 | Article | MR 1996871 | Zbl 1025.22012
[7] The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, Tome 31 (1979), pp. 331-357 | Article | MR 527548 | Zbl 0396.53025
[8] Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92, Birkhäuser, Boston (1990), pp. 263-287 | MR 1103593 | Zbl 0744.22012
[9] Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math., Tome 121 (1995), pp. 531-578 | Article | MR 1353308 | Zbl 0861.22008
[10] Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups, Progr. Math. 101, Birkhäuser, Boston (1991), pp. 235-275 | MR 1168487 | Zbl 0751.22003
[11] Characteristic cycles of constructible sheaves, Invent. Math., Tome 124 (1996), pp. 451-502 | Article | MR 1369425 | Zbl 0851.32011
[12] Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc., Tome 11 (1998), pp. 799-867 | Article | MR 1612634 | Zbl 0976.22010
[13] Lie groups, Lie algebras, and their representations, Graduate Texts in Math. 102, Springer-Verlag, New York (1984) | MR 746308 | Zbl 0955.22500
[14] Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. (4), Tome 23 (1990), pp. 543-562 | Numdam | MR 1072817 | Zbl 0718.22009