Etant donnés () des -modules non triviaux de dimensions respectives (avec ) et un -homomorphisme, nous montrons que l’hyperdéterminant de est nul sauf si les modules sont irréductibles et si l’homomorphisme est la multiplication des polynômes homogènes à deux variables.
Let () be non-trivial -modules with dimensions (such that ) and an -homomorphism. We show that the hyperdeterminant of is null except if the modules are irreducibles and the homomorphism is the multiplication of homogeneous polynomials with two variables.
@article{AMBP_2008__15_1_81_0, author = {Vall\`es, Jean}, title = {Hyperd\'eterminant d'un $SL\_{2}$-homomorphisme}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {15}, year = {2008}, pages = {81-86}, doi = {10.5802/ambp.240}, zbl = {1141.14030}, mrnumber = {2418014}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2008__15_1_81_0} }
Vallès, Jean. Hyperdéterminant d’un $SL_{2}$-homomorphisme. Annales mathématiques Blaise Pascal, Tome 15 (2008) pp. 81-86. doi : 10.5802/ambp.240. http://gdmltest.u-ga.fr/item/AMBP_2008__15_1_81_0/
[1] Unstable hyperplanes for Steiner bundles and multidimensional matrices, Advances in Geometry, Tome 1 (2001) no. 2, pp. 165-192 | Article | MR 1840220 | Zbl 0983.14034
[2] On the theory of linear transformations, Cambridge Math. J. (1845) no. 4, pp. 193-209
[3] Stabilizers for nondegenerate matrices of boundary format and Steiner bundles, Rev.Mat.Complut., Tome 17 (2004), pp. 459-469 | MR 2083965 | Zbl 1068.14019
[4] Arrangement of hyperplanes and vector bundles on , Duke Math. J. (1993) no. 71, pp. 633-664 | Article | MR 1240599 | Zbl 0804.14007
[5] Discriminants, resultants, and multidimensional determinants, Birkhäuser, Mathematics : Theory & Applications (1994) | MR 1264417 | Zbl 0827.14036
[6] Vector bundles on the projective plane, Proc. London Math. Soc., Tome 11 (1961), pp. 623-640 | Article | MR 137712 | Zbl 0212.26004