Properties of the so called -complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space of all continuous functions, from a zero-dimensional topological space to a non-Archimedean locally convex space , equipped with the topology of uniform convergence on the compact subsets of to be polarly barrelled or polarly quasi-barrelled.
@article{AMBP_2008__15_1_109_0, author = {Katsaras, Athanasios}, title = {P-adic Spaces of Continuous Functions I}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {15}, year = {2008}, pages = {109-133}, doi = {10.5802/ambp.242}, zbl = {1158.46050}, mrnumber = {2418016}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2008__15_1_109_0} }
Katsaras, Athanasios. P-adic Spaces of Continuous Functions I. Annales mathématiques Blaise Pascal, Tome 15 (2008) pp. 109-133. doi : 10.5802/ambp.242. http://gdmltest.u-ga.fr/item/AMBP_2008__15_1_109_0/
[1] Zero-dimensional pseudocompact and ultraparacompact spaces, -adic functional analysis (Nijmegen, 1996), Dekker, New York (Lecture Notes in Pure and Appl. Math.) Tome 192 (1997), pp. 11-17 | MR 1459198 | Zbl 0888.54026
[2] On the dual space for the strict topology and the space in function space, Ultrametric functional analysis, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 384 (2005), pp. 15-37 | MR 2174775 | Zbl 1104.46046
[3] Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc., Tome 204 (1975), pp. 91-112 | Article | MR 402687 | Zbl 0299.54016
[4] The strict topology in non-Archimedean vector-valued function spaces, Nederl. Akad. Wetensch. Indag. Math., Tome 46 (1984) no. 2, pp. 189-201 | MR 749531 | Zbl 0548.46059
[5] Bornological spaces of non-Archimedean valued functions, Nederl. Akad. Wetensch. Indag. Math., Tome 49 (1987) no. 1, pp. 41-50 | MR 883366 | Zbl 0628.46077
[6] On the strict topology in non-Archimedean spaces of continuous functions, Glas. Mat. Ser. III, Tome 35(55) (2000) no. 2, pp. 283-305 | MR 1812558 | Zbl 0970.46049
[7] Separable measures and strict topologies on spaces of non-Archimedean valued functions, Bull. Belg. Math. Soc. Simon Stevin, Tome 9 (2002) no. suppl., pp. 117-139 | MR 2232644 | Zbl 1107.46052
[8] Locally convex spaces over nonspherically complete valued fields. I, II, Bull. Soc. Math. Belg. Sér. B, Tome 38 (1986) no. 2, p. 187-207, 208–224 | MR 871313 | Zbl 0615.46071
[9] Non-Archimedean functional analysis, Marcel Dekker Inc., New York, Monographs and Textbooks in Pure and Applied Math., Tome 51 (1978) | MR 512894 | Zbl 0396.46061