A famous theorem of E. Gagliardo gives the characterization of traces for Sobolev spaces for when is a Lipschitz domain. The extension of this result to for and is now well-known when is a smooth domain. The situation is more complicated for polygonal and polyhedral domains since the characterization is given only in terms of local compatibility conditions at the vertices, edges, .... Some recent papers give the characterization for general Lipschitz domains for m=2 in terms of global compatibility conditions. Here we give the necessary compatibility conditions for and we prove how the local compatibility conditions can be derived.
@article{AMBP_2007__14_2_187_0, author = {Geymonat, Giuseppe}, title = {Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {14}, year = {2007}, pages = {187-197}, doi = {10.5802/ambp.232}, zbl = {1161.46019}, mrnumber = {2369871}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2007__14_2_187_0} }
Geymonat, Giuseppe. Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions. Annales mathématiques Blaise Pascal, Tome 14 (2007) pp. 187-197. doi : 10.5802/ambp.232. http://gdmltest.u-ga.fr/item/AMBP_2007__14_2_187_0/
[1] Sobolev spaces. Second edition, Academic Press, New York (2003) | Zbl 1098.46001
[2] On the traces of functions in for Lipschitz domains in , C. R. Acad. Sci. Paris, Série I, Tome 332 (2001), pp. 699-704 | MR 1843191 | Zbl 0987.46036
[3] On traces for functional spaces related to Maxwell’s equations. Part I: an integration by parts formula in Lipschitz Polyedra, Math. Meth. Appl. Sci., Tome 24 (2001), pp. 9-30 | Article | Zbl 0998.46012
[4] A proof of the trace theorem of Sobolev spaces on Lipschitz domains, Proc. A. M. S., Tome 124 (1996), pp. 591-600 | Article | MR 1301021 | Zbl 0841.46021
[5] On the traces of for a Lipschitz domain, Rev. Mat. Complutense, Tome XIV (2001), pp. 371-377 | MR 1871302 | Zbl 1029.46031
[6] Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n-variabili, Rend. Sem. Mat. Univ. Padova, Tome 27 (1957), pp. 284-305 | Numdam | MR 102739 | Zbl 0087.10902
[7] On the existence of the airy function in Lipschitz domains. Application to the traces of , C. R. Acad. Sci. Paris, Série I, Tome 330 (2000), pp. 355-360 | MR 1751670 | Zbl 0945.35065
[8] Elliptic boundary value problems in nonsmooth domains, Pitman, London (1985) | Zbl 0695.35060
[9] Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967) | MR 227584