Si est une classe de groupes, alors un groupe est dit minimal non -groupe si tous ses sous-groupes propres sont dans la classe , alors que lui-même n’est pas un -groupe. Le principal résultat de cette note affirme que si est un entier et si est un groupe minimal non (respectivement, )-groupe, alors est un groupe parfait, de type fini, n’ayant pas de facteur fini non trivial et tel que est un groupe simple infini ; où (respectivement, , ) désigne la classe des groupes nilpotents (respectivement, nilpotents de classe égale au plus à , localement finis) et est le sous-groupe de Frattini de .
If is a class of groups, then a group is said to be minimal non -group if all its proper subgroups are in the class , but itself is not an -group. The main result of this note is that if is an integer and if is a minimal non (respectively, )-group, then is a finitely generated perfect group which has no non-trivial finite factor and such that is an infinite simple group; where (respectively, , ) denotes the class of nilpotent (respectively, nilpotent of class at most , locally finite) groups and stands for the Frattini subgroup of .
@article{AMBP_2007__14_1_29_0, author = {Dilmi, Amel}, title = {Groups whose proper subgroups are locally finite-by-nilpotent}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {14}, year = {2007}, pages = {29-35}, doi = {10.5802/ambp.225}, zbl = {1131.20023}, mrnumber = {2298722}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2007__14_1_29_0} }
Dilmi, Amel. Groups whose proper subgroups are locally finite-by-nilpotent. Annales mathématiques Blaise Pascal, Tome 14 (2007) pp. 29-35. doi : 10.5802/ambp.225. http://gdmltest.u-ga.fr/item/AMBP_2007__14_1_29_0/
[1] Nilpotent-by-Chernikov, J. London Math.Soc, Tome 61 (2000) no. 2, pp. 412-422 | Article | MR 1756802 | Zbl 0961.20031
[2] Groups of the Miller-Moreno type, Sibirsk. Mat. Z., Tome 19 (1978) no. 3, pp. 509-514 | MR 577067 | Zbl 0394.20025
[3] On minimal conditions related to Miller-Moreno type groups, Rend. Sem. Mat. Univ. Padova, Tome 69 (1983), pp. 153-168 | Numdam | MR 716991 | Zbl 0522.20022
[4] On Torsion-by-nilpotent groups, J. Algebra, Tome 241 (2001) no. 2, pp. 669-676 | Article | MR 1843318 | Zbl 0984.20024
[5] Locally finite minimal non FC-groups, Math. Proc. Cambridge Philos. Soc., Tome 105 (1989), pp. 417-420 | Article | MR 985676 | Zbl 0686.20034
[6] Groups with many nilpotent subgroups, Arch. Math., Tome 15 (1964), pp. 241-250 | Article | MR 170949 | Zbl 0134.26102
[7] An infinite simple torsion-free noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., Tome 43 (1979), pp. 1328-1393 | MR 567039 | Zbl 0431.20027
[8] Groups in which every proper subgroup is Cernikov-by-nilpotent or nilpotent-by-Cernikov, Arch.Math., Tome 51 (1988), pp. 193-197 | Article | MR 960393 | Zbl 0632.20018
[9] Finiteness conditions and generalized soluble groups, Springer-Verlag (1972)
[10] A Course in the Theory of Groups, Springer-Verlag (1982) | MR 648604 | Zbl 0483.20001
[11] Groups with few non-nilpotent subgroups, Glasgow Math. J., Tome 39 (1997), pp. 141-151 | Article | MR 1460630 | Zbl 0883.20018
[12] Groups whose proper subgroups are Baer groups, Acta. Math. Sinica, Tome 40 (1996), pp. 10-17 | MR 1388572 | Zbl 0840.20030
[13] Groups whose proper subgroups are finite-by-nilpotent, Arch. Math., Tome 66 (1996), pp. 353-359 | Article | MR 1383898 | Zbl 0857.20015