Le principal résultat de cet article est qu’un groupe hyper-(Abélien-par-fini) de type fini est fini-par-nilpotent si, et seulement si, toute partie infinie de contient deux éléments distincts tels que pour un certain entier positif (respectivement, est une extension d’un groupe vérifiant la condition minimale sur les sous-groupes normaux par un groupe d’Engel).
The main result of this note is that a finitely generated hyper-(Abelian-by-finite) group is finite-by-nilpotent if and only if every infinite subset contains two distinct elements , such that for some positive integer (respectively, is an extension of a group satisfying the minimal condition on normal subgroups by an Engel group).
@article{AMBP_2007__14_1_17_0, author = {Gherbi, Fares and Rouabhi, Tarek}, title = {Hyper--(Abelian--by--finite) groups with many subgroups of finite depth}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {14}, year = {2007}, pages = {17-28}, doi = {10.5802/ambp.224}, zbl = {1131.20024}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2007__14_1_17_0} }
Gherbi, Fares; Rouabhi, Tarek. Hyper–(Abelian–by–finite) groups with many subgroups of finite depth. Annales mathématiques Blaise Pascal, Tome 14 (2007) pp. 17-28. doi : 10.5802/ambp.224. http://gdmltest.u-ga.fr/item/AMBP_2007__14_1_17_0/
[1] Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Tome 103 (2000), pp. 47-49 | Numdam | MR 1789531 | Zbl 0966.20019
[2] Some Engel conditions on infinite subsets of certain groups, Bull. Austral. Math. Soc., Tome 62 (2000), pp. 141-148 | Article | MR 1775895 | Zbl 0964.20019
[3] A condition on finitely generated soluble groups, Comm. Algebra, Tome 27 (1999), pp. 5633-5638 | Article | MR 1713058 | Zbl 0942.20014
[4] Quelques extensions d’un problème de Paul Erdos sur les groupes, Bull. Belg. Math. Soc., Tome 9 (2002), pp. 205-215 | MR 2017077 | Zbl 1041.20022
[5] Characterisation of finitely generated finite-by-nilpotent groups, Rend. Sem. Mat. Univ. Padova, Tome 111 (2004), pp. 119-126 | Numdam | MR 2076735 | Zbl 05058721
[6] Locally graded groups with a nilpotence condition on infinite subsets, J. Austral. Math. Soc. (series A), Tome 69 (2000), pp. 415-420 | Article | MR 1793472 | Zbl 0982.20019
[7] Groups covered by finitely many nilpotent subgroups, Bull. Austral. Math. Soc., Tome 50 (1994), pp. 459-464 | Article | MR 1303902 | Zbl 0824.20034
[8] Groups in which certain equations have many solutions, Rend. Sem. Mat. Univ. Padova, Tome 106 (2001), pp. 77-82 | Numdam | MR 1876214 | Zbl 1072.20035
[9] Some problems of Burnside type, Amer. Math. Soc. Transl. Ser. 2, Tome 84 (1969), pp. 83-88 | MR 238880 | Zbl 0206.32402
[10] Finite-by-nilpotent groups, Proc. Cambridge Philos. Soc., Tome 52 (1956), pp. 611-616 | Article | MR 80095 | Zbl 0072.25801
[11] Finitely generated soluble groups in which all subgroups have finite lower central depth, Bull. London Math. Soc., Tome 7 (1975), pp. 273-278 | Article | MR 382448 | Zbl 0314.20029
[12] Lower central depth in finitely generated soluble-by-finite groups, Glasgow Math. J., Tome 19 (1978), p. 153-154 | Article | MR 486159 | Zbl 0394.20027
[13] Extensions of a problem of Paul Erdos on groups, J. Austral. Math. Soc. Ser. A, Tome 31 (1981), pp. 459-463 | Article | MR 638274 | Zbl 0492.20019
[14] On locally graded groups with an Engel condition on infinite subsets, Arch. Math., Tome 76 (2001), pp. 88-90 | Article | MR 1811284 | Zbl 0981.20027
[15] Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Tome 89 (1993), pp. 97-102 | Numdam | MR 1229046 | Zbl 0797.20031
[16] A problem of Paul Erdos on groups, J. Austral. Math. Soc. ser. A, Tome 21 (1976), pp. 467-472 | Article | MR 419283 | Zbl 0333.05110
[17] Finiteness conditions and generalized soluble groups, Springer-Verlag, Berlin, Heidelberg, New York (1972) | Zbl 0243.20032
[18] A course in the theory of groups, Springer-Verlag, Berlin, Heidelberg, New York (1982) | MR 648604 | Zbl 0483.20001
[19] A residual property of finitely generated abelian by nilpotent groups, J. Algebra, Tome 32 (1974), pp. 389-399 | Article | MR 419612 | Zbl 0293.20029
[20] Polycyclic groups, Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney (1984) | MR 713786 | Zbl 0516.20001
[21] A question of P. Erdos and nilpotent-by-finite groups, Bull. Austral. Math. Soc., Tome 64 (2001), pp. 245-254 | Article | MR 1860061 | Zbl 0995.20020
[22] Finitely generated soluble groups with a condition on infinite subsets, Algebra Colloq., Tome 9 (2002), pp. 427-432 | MR 1933851 | Zbl 1035.20030
[23] Soluble groups with many 2-generator torsion-by-nilpotent subgroups, Publ. Math. Debrecen, Tome 67/1-2 (2005), pp. 93-102 | MR 2163117 | Zbl 02201546