Let be a knot in the -sphere , and a disk in meeting transversely in the interior. For non-triviality we assume that over all isotopies of in . Let () be a knot obtained from by twistings along the disk . If the original knot is unknotted in , we call a twisted knot. We describe for which pair and an integer , the twisted knot is a torus knot, a satellite knot or a hyperbolic knot.
@article{AMBP_2006__13_1_31_0, author = {A\"\i t-Nouh, Mohamed and Matignon, Daniel and Motegi, Kimihiko}, title = {Geometric types of twisted knots}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {13}, year = {2006}, pages = {31-85}, doi = {10.5802/ambp.213}, zbl = {1158.57005}, mrnumber = {2233011}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2006__13_1_31_0} }
Aït-Nouh, Mohamed; Matignon, Daniel; Motegi, Kimihiko. Geometric types of twisted knots. Annales mathématiques Blaise Pascal, Tome 13 (2006) pp. 31-85. doi : 10.5802/ambp.213. http://gdmltest.u-ga.fr/item/AMBP_2006__13_1_31_0/
[1] Obtaining graph knots by twisting unknots, C. R. Acad. Sci. Paris, Ser. I, Tome 337 (2003), pp. 321-326 | MR 2016983 | Zbl 1033.57003
[2] Obtaining graph knots by twisting unknots, Topology Appl., Tome 146-147 (2005), pp. 105-121 | Article | MR 2107139 | Zbl 02136458
[3] Dehn surgery on knots, Ann. Math, Tome 125 (1987), pp. 237-300 | Article | MR 881270 | Zbl 0633.57006
[4] A combinatorial analog of the Poincaré Index Theorem, J. Comb. Theory Ser., Tome B15 (1973), pp. 264-268 | Article | MR 327558 | Zbl 0264.05112
[5] Dehn surgeries on -bridge links which yield reducible -manifolds (preprint)
[6] On composite twisted unknots, Trans. Amer. Math. Soc., Tome 349 (1997), pp. 4429-4463 | Article | MR 1355072 | Zbl 0883.57004
[7] Combinatorial methods in Dehn surgery, Lectures at Knots 96, World Scientific Publishing Co (1997), pp. 263-290 | MR 1474525 | Zbl 0940.57022
[8] Incompressible planar surfaces in -manifolds, Topology Appl., Tome 18 (1984), pp. 121-144 | Article | MR 769286 | Zbl 0554.57010
[9] Knots are determined by their complements, J. Amer. Math. Soc., Tome 2 (1989), pp. 371-415 | Article | MR 965210 | Zbl 0678.57005
[10] Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., Tome 4 (1995), pp. 597-644 | MR 1371211 | Zbl 0865.57015
[11] Toroidal and boundary-reducing Dehn fillings, Topology Appl., Tome 93 (1999), pp. 77-90 | Article | MR 1684214 | Zbl 0926.57019
[12] Non-integral toroidal Dehn surgeries, Comm. Anal. Geom., Tome 12 (2004), pp. 417-485 | MR 2074884 | Zbl 1062.57006
[13] Only single twist on unknots can produce composite knots, Trans. Amer. Math. Soc., Tome 349 (1997), pp. 4465-4479 | Article | MR 1355073 | Zbl 0883.57005
[14] Seifert fibered spaces in -manifolds, Mem. Amer. Math. Soc., Tome 220 (1979) | MR 539411 | Zbl 0415.57005
[15] Homotopy equivalences of -manifolds with boundaries, Lect.Notes in Math, Springer-Verlag (1979) | MR 551744 | Zbl 0412.57007
[16] Twisting and knot types, J. Math. Soc. Japan, Tome 44 (1992), pp. 199-216 | Article | MR 1154840 | Zbl 0739.57003
[17] Unknotting, knotting by twists on disks and property (P) for knots in , Knots 90 (ed. by Kawauchi), Proc. 1990 Osaka Conf. on Knot Theory and Related Topics, de Gruyter (1992), pp. 93-102 | MR 1177414 | Zbl 0772.57012
[18] Closed incompressible surfaces in alternating knot and link complements, Topology, Tome 23 (1984), pp. 37-44 | Article | MR 721450 | Zbl 0525.57003
[19] Seifert fibered manifolds and Dehn surgery III, Comm. Anal. Geom., Tome 7 (1999), pp. 551-582 | MR 1698388 | Zbl 0940.57025
[20] The Smith conjecture, Academic Press (1984) | MR 758459 | Zbl 0599.57001
[21] Knot types of satellite knots and twisted knots, Lectures at Knots 96, World Scientific Publishing Co (1997), pp. 579-603 | MR 1474519 | Zbl 0914.57005
[22] Are knots obtained from a plain pattern always prime ?, Kobe J. Math., Tome 9 (1992), pp. 39-42 | MR 1189955 | Zbl 0766.57004
[23] Twisting and unknotting operations, Rev. Mat. Univ. Complut. Madrid, Tome 7 (1994), pp. 289-305 | MR 1297516 | Zbl 0861.57015
[24] Knots and links, Publish or Perish, Berkeley, Calif. (1976) | MR 515288 | Zbl 0339.55004
[25] Unknotting-number-one knots are prime, Invent. Math., Tome 82 (1985), pp. 37-55 | Article | MR 808108 | Zbl 0576.57004
[26] Producing reducible -manifolds by surgery on a knot, Topology, Tome 29 (1990), pp. 481-500 | Article | MR 1071370 | Zbl 0727.57015
[27] Composite knots trivialized by twisting, J. Knot Theory Ramifications, Tome 1 (1992), pp. 1623-1629 | Article | MR 1194998 | Zbl 0765.57010
[28] The geometry and topology of -manifolds, Lecture notes, Princeton University (1979)
[29] Dehn surgery on arborescent links, Trans. Amer. Math. Soc., Tome 351 (1999), pp. 2275-2294 | Article | MR 1458339 | Zbl 0919.57008