In this paper we generalize the Pascal triangle and examine the connections among the generalized triangles and powering integers respectively polynomials. We emphasize the relationship between the new triangles and the Pascal pyramids, moreover we present connections with the binomial and multinomial theorems.
@article{AMBP_2006__13_1_1_0, author = {Kall\'os, G\'abor}, title = {A generalization of Pascal's triangle using powers of base numbers}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {13}, year = {2006}, pages = {1-15}, doi = {10.5802/ambp.211}, zbl = {1172.11302}, mrnumber = {2233009}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2006__13_1_1_0} }
Kallós, Gábor. A generalization of Pascal’s triangle using powers of base numbers. Annales mathématiques Blaise Pascal, Tome 13 (2006) pp. 1-15. doi : 10.5802/ambp.211. http://gdmltest.u-ga.fr/item/AMBP_2006__13_1_1_0/
[1] Pascal’s pyramid, Math. Teacher, Tome 61 (1968), pp. 19-21
[2] A note on Pascal-T triangles, multinomial coefficients, and Pascal pyramids, The Fibonacci Quarterly, Tome 24.2 (1986), pp. 140-144 | MR 843962 | Zbl 0598.05011
[3] Generalized Pascal triangles and pyramids, their fractals, graphs and applications, The Fibonacci Association, Santa Clara (1993) (Translated from russian by Richard C. Bollinger) | Zbl 0792.05001
[4] Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, Tome 34 (1996), pp. 109-121 | Zbl 0863.05006
[5] Restricted occupancy theory – a generalization of Pascal’s triangle, Amer. Math. Monthly, Tome 63 (1956), pp. 20-27 | Article | MR 74356 | Zbl 0070.01201
[6] Generalizations of Pascal’s triangle (1993) (Master thesis (in Hungarian), Eötvös Loránd University, Budapest)
[7] The generalization of Pascal’s triangle from algebraic point of view, Acta Acad. Paed. Agriensis, Tome XXIV (1997), pp. 11-18 | Zbl 0886.05003
[8] Pascal’s triangle and powers of 11, Math. Teacher, Tome 57 (1964), pp. 392-394
[9] On-line encyclopedia of integer sequences, http://www.research.att.com/~njas/sequences/ (Internet Database)