A detailed study of power series on the Levi-Civita fields is presented. After reviewing two types of convergence on those fields, including convergence criteria for power series, we study some analytical properties of power series. We show that within their domain of convergence, power series are infinitely often differentiable and re-expandable around any point within the radius of convergence from the origin. Then we study a large class of functions that are given locally by power series and contain all the continuations of real power series. We show that these functions have similar properties as real analytic functions. In particular, they are closed under arithmetic operations and composition and they are infinitely often differentiable.
@article{AMBP_2005__12_2_309_0, author = {Shamseddine, Khodr and Berz, Martin}, title = {Analytical properties of power series on Levi-Civita fields}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {12}, year = {2005}, pages = {309-329}, doi = {10.5802/ambp.209}, zbl = {1087.26020}, mrnumber = {1760545}, language = {en}, url = {http://dml.mathdoc.fr/item/AMBP_2005__12_2_309_0} }
Shamseddine, Khodr; Berz, Martin. Analytical properties of power series on Levi-Civita fields. Annales mathématiques Blaise Pascal, Tome 12 (2005) pp. 309-329. doi : 10.5802/ambp.209. http://gdmltest.u-ga.fr/item/AMBP_2005__12_2_309_0/
[1] Foundations of analysis over surreal number fields, North Holland (1987) | MR 886475 | Zbl 0621.12001
[2] Analysis on a nonarchimedean extension of the real numbers, Department of Physics, Michigan State University (1994) no. MSUCL-933 (Lecture Notes, 1992 and 1995 Mathematics Summer Graduate Schools of the German National Merit Foundation.)
[3] Calculus and numerics on Levi-Civita fields, Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia (1996), pp. 19-35 | MR 1431039 | Zbl 0878.65013
[4] Cauchy Theory on Levi-Civita fields, Contemporary Mathematics, American Mathematical Society, Tome 319 (2003), pp. 39-52 | MR 1977437 | Zbl 1045.12006
[5] Analytical and Computational Methods for the Levi-Civita fields, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker (Proceedings of the Sixth International Conference on P-adic Analysis, July 2-9, 2000, ISBN 0-8247-0611-0), pp. 21-34 | MR 1838279 | Zbl 1001.12009
[6] Allgemeine Bewertungstheorie, J. Reine Angew. Math., Tome 167 (1932), pp. 160-196 | Article | Zbl 0004.09802
[7] Tullio Levi-Civita’s Work on Nonarchimedean Structures (with an Appendix: Properties of Levi-Civita Fields), Atti Dei Convegni Lincei 8: Convegno Internazionale Celebrativo Del Centenario Della Nascita De Tullio Levi-Civita, Academia Nazionale dei Lincei, Roma (1975)
[8] Sugli infiniti ed infinitesimi attuali quali elementi analitici, Atti Ist. Veneto di Sc., Lett. ed Art., Tome 7a, 4 (1892), pp. 1765
[9] Sui numeri transfiniti, Rend. Acc. Lincei, Tome 5a, 7 (1898), pp. 91-113
[10] Modell einer Leibnizschen Differentialrechnung mit aktual unendlich kleinen Größen, Mathematische Annalen, Tome 118 (1941-1943), pp. 718-732 | Article | MR 10180 | Zbl 0027.38904
[11] Functions of real variables, G. E. Stechert & CO., New York (1938) | Zbl 0087.26801
[12] Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen, Springer, Berlin (1983) | MR 704186 | Zbl 0558.51012
[13] Fields: algebraically closed and others, Manuscripta Mathematica, Tome 75 (1992), pp. 115-150 | Article | MR 1160093 | Zbl 0767.12001
[14] Ultrametric calculus: an introduction to p-adic analysis, Cambridge University Press (1985) | MR 791759 | Zbl 0553.26006
[15] Exception handling in derivative computation with non-archimedean calculus, Computational Differentiation: Techniques, Applications, and Tools, SIAM, Philadelphia (1996), pp. 37-51 | MR 1431040 | Zbl 0878.65014
[16] Intermediate values and inverse functions on non-archimedean fields, International Journal of Mathematics and Mathematical Sciences, Tome 30 (2002), pp. 165-176 | Article | MR 1905419 | Zbl 0996.26020
[17] Measure theory and integration on the Levi-Civita field, Contemporary Mathematics, Tome 319 (2003), pp. 369-387 | MR 1977457 | Zbl 02064605
[18] Convergence on the Levi-Civita field and study of power series, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker (Proceedings of the Sixth International Conference on P-adic Analysis, July 2-9, 2000, ISBN 0-8247-0611-0), pp. 283-299 | MR 1838300 | Zbl 0985.26014
[19] New elements of analysis on the Levi-Civita field, East Lansing, Michigan, USA, Michigan State University (1999) (Ph. D. Thesis)