On considère le noyau de Poisson du processus -stable symétrique pour un domaine conique. Puis on considère le problème d’intégrabilité du noyau de Poisson à la puissance . On donne des conditions sur pour qu’il existe une solution au problème de Dirichlet pour les fonctions -harmoniques sur les domaines coniques, avec une condition au bord donnée par une fonction de .
@article{AMBP_2005__12_2_297_0, author = {Bogdan, Krzysztof and Jakubowski, Tomasz}, title = {Probl\`eme de Dirichlet pour les fonctions $\alpha $-harmoniques sur les domaines coniques}, journal = {Annales math\'ematiques Blaise Pascal}, volume = {12}, year = {2005}, pages = {297-308}, doi = {10.5802/ambp.208}, zbl = {1100.31004}, language = {fr}, url = {http://dml.mathdoc.fr/item/AMBP_2005__12_2_297_0} }
Bogdan, Krzysztof; Jakubowski, Tomasz. Problème de Dirichlet pour les fonctions $\alpha $-harmoniques sur les domaines coniques. Annales mathématiques Blaise Pascal, Tome 12 (2005) pp. 297-308. doi : 10.5802/ambp.208. http://gdmltest.u-ga.fr/item/AMBP_2005__12_2_297_0/
[1] Symmetric stable processes in cones, Potential Anal., Tome 21 (2004) no. 3, pp. 263-288 | Article | MR 2075671 | Zbl 1054.31002
[2] Potential theory for the -stable Schrödinger operator on bounded Lipschitz domains, Studia Math., Tome 133 (1999) no. 1, pp. 53-92 | MR 1671973 | Zbl 0923.31003
[3] Probabilistic proof of boundary Harnack principle for -harmonic functions, Potential Anal., Tome 11 (1999) no. 2, pp. 135-156 | Article | MR 1703823 | Zbl 0936.31009
[4] The boundary Harnack principle for the fractional Laplacian, Studia Math., Tome 123 (1997) no. 1, pp. 43-80 | MR 1438304 | Zbl 0870.31009
[5] Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl., Tome 243 (2000) no. 2, pp. 326-337 | Article | MR 1741527 | Zbl 0971.31005
[6] Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., Tome 312 (1998) no. 3, pp. 465-501 | Article | MR 1654824 | Zbl 0918.60068
[7] Estimates of harmonic measure, Arch. Rational Mech. Anal., Tome 65 (1977) no. 3, pp. 275-288 | Article | MR 466593 | Zbl 0406.28009
[8] The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist., Tome 22 (2002) no. 2, pp. 419-441 | MR 1991120 | Zbl 1035.60046
[9] An identity with applications to harmonic measure, Bull. Amer. Math. Soc. (N.S.), Tome 2 (1980) no. 3, pp. 447-451 | Article | MR 561530 | Zbl 0436.31002
[10] Properties of Green function of symmetric stable processes, Probab. Math. Statist., Tome 17 (1997) no. 2, pp. 339-364 | MR 1490808 | Zbl 0903.60063
[11] Exit time and Green function of cone for symmetric stable processes, Probab. Math. Statist., Tome 19 (1999) no. 2, pp. 337-374 | MR 1750907 | Zbl 0986.60071
[12] Nontangential convergence of -harmonic functions in Lipschitz domains, To appear in Ill. J. Math. (2004) | Zbl 1063.31006
[13] Martin representation for -harmonic functions, Probab. Math. Statist., Tome 20 (2000) no. 1, pp. 75-91 | MR 1785239 | Zbl 0999.60073
[14] Sharp estimates of the Green function, Poisson kernel and Martin kernel of cones for symmetric stable processes, Preprint (2004) | MR 2213639 | Zbl 1103.31003
[15] Boundary Harnack Principle for fractional powers of Laplacian on Sierpinski carpet, Preprint (2004) | MR 2261965 | Zbl 05128462